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I. Introduction 
 

1.1 Quality of Care 
The ongoing debate over how to measure inpatient quality of care has, from time to time, 
focused on different aspects of Avedis Donabeidan’s 1965 “structure-process-outcome” 
triad1.  The focus on observable outcomes has shifted conceptualizations of hospital 
quality towards the ideas of Joe Juran and others2 who define manufacturing quality as 
the absence of defects.  By this definition, deaths, complications, unusually long hospital 
stays, unscheduled ICU admissions and other sentinel events that are deemed universally 
negative (or nearly so) signal the extent to which a care provider deviates from “good 
quality.”  Despite disagreements over the best approach to measure inpatient quality, 
most investigators accept that treatment quality is the absence of adverse events.  

 

1.2 CareScience Quality Measures 
CareScience measures three adverse outcomes to capture quality of care: mortality, 
complications, and morbidity.  Each of these measures possesses its own strengths and 
weaknesses and is better suited to certain patient populations and applications.  Together 
they provide a complementary and effective means for screening quality improvement 
opportunities. 
 

1.2.1 Mortality 
Mortality is perhaps the most widely used quality measure, since the occurrence of death 
seems unambiguously a defect of care.  Inpatient mortality rates are also easily observed 
by simply counting deaths from discharges.  While mortality has advantages as a quality 
of care indicator, it possesses drawbacks.  The approach of simply counting deaths from 
discharges can inadvertently mask “true” mortality rates, which may be disguised by 
discharge policies.  For instance, inpatient mortality rates can be reduced by transferring 
the most severely afflicted patients to another acute care facility, skilled nursing home, or 
hospice.  Mortality rate is also prone to wide variation across diseases, rendering them 
irrelevant for certain populations for quality analysis. In populations where death is very 
rare (e.g. kidney and ureter calculus) or largely expected (e.g. admitted with DNR), 
mortality becomes a less meaningful quality measure.  
 

1.2.2 Complications 

Complications are a relevant quality measure for most patient populations.  They range 
from trivial to significant and can result in increased lengths of stay or unscheduled 
treatments.  The challenge with measuring complications is the difficulty observing them 

                                                 
1 Donabedian A. Evaluating the Quality of Medical Care, Milbank Quarterly,1966; 44:166-203. 
2 Juran JM et al. Quality Planning and Analysis: From Product Development Through Use. McGraw-Hill 
Series in Industrial Engineering and Management Science, 1993. 
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and their dependence on good documentation and coding consistency.  Traditionally, 
complications have been tracked using chart reviews during which clinicians pull and 
review individual patient charts.  These time-consuming reviews are expensive and 
laborious and consequently unsuitable for large scale data analysis.  CareScience has 
developed a unique decision-theoretic complication tracking model that uses comorbidity 
adjusted complication indices (CACI) to distinguish complications from comorbidities. 
This model assumes a nonstandard definition of complications, defining them as 
conditions that arise during a patient's hospital stay.  By this construction, complications 
do not necessarily imply iatrogenic events or physician negligence.   
 
Validation studies have shown that the comorbidity-adjusted risk (CACR) model yields 
similar results to chart reviews at the aggregate level, particularly for surgically treated 
patients3.  
 

1.2.3 Morbidity 
Morbidity is defined as the severity of a patient's complications.  Within the CareScience 
model, morbidity is divided into 5 severity levels, A-E, which follow a Likert scale. 
Complications in category D and E are considered ‘morbid’ complications, and they are 
separately measured under the label of ‘morbidity’. They often result in temporary 
impairment, unscheduled ICU admission, and significant increase in length of stay.  

 

1.3 CareScience Efficiency Measures 
In addition to quality of care, a hospital's success depends on its financial performance 
and its ability to manage patients' lengths of stay, costs, and charges efficiently.  These 
economic concerns are particularly relevant in today’s climate of rising healthcare costs 
that routinely exceed the Consumer Price Index (CPI) by several folds.  CareScience 
tracks and examines three efficiency outcomes: length of stay, costs, and charges. 

 
1.3.1 Length of Stay 

Length of stay is a commonly used proxy for resource usage, reflecting how efficiently a 
hospital allocates resources.  It is easy to observe and compare across hospitals and offers 
the advantage of being reliably recorded.  Despite these desirable attributes, length of 
stay is prone to varying hospital discharge policies that can bias it as an outcome 
measure.  Hospitals that regularly transfer patients to affiliated long-term care facilities 
often have reduced lengths of stay.  As a result, the relationship between efficiency and 
length of stay can be soured by the possibility of efficiency being achieved at the cost of 
sufficient treatment.  Nevertheless, length of stay is widely accepted as a proxy for 
efficiency.  
 

1.3.2 Charges 

                                                 
3 Azimuddin K, Rosen L, Reed JF. Computerized Assessment of Complications after Colorectal Surgery. 
Diseases of Colon & Rectum 2001; 44:500-505. 
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Patient charges can serve as a supplementary efficiency measure to length of stay.  
Charge information can be found in electronic record databases built for billing.  
Although charge data are readily available, charge practices are generally not comparable 
across facilities or even departments and therefore require adjustments.   
 

1.3.3 Costs  
In measuring hospital performance, charges have become a useful proxy for the 
“costliness” of care.  Unadorned charges, however, are a poor indicator of hospital 
expenditures, especially at the patient level.  Nonetheless, by applying a well defined and 
hospital-specific Cost-to-Charge-Ratio (CCR), hospitals’ reported charges can be 
adjusted to a dollar amount that more closely approximates the “true” cost of care.  These 
adjusted costs can be used to compare hospitals that do not share the same accounting 
standards.  Appendix A provides a detailed discussion of calculating costs.  

 

1.4 Outcome Evaluation and Risk Adjustment  
Inpatient care can be viewed as a process in which the patient’s characteristics upon 
admission (e.g. comorbidities, etc) are the inputs and his health status and financial 
outcome upon discharge are the outputs.  Patient health and financial outcomes are 
influenced not only by the care process but also by the severity of the patient upon 
entering the hospital; sicker patients are at higher risk for worse outcomes than patients 
who are less severely afflicted upon hospital admission.  Risk adjustment strives to 
account for these differences in evaluations of care. 
 
Evaluation of patient outcomes4 requires benchmarking, wherein a hospital’s (or 
physician’s) outcome rates are compared to their expected rates (outcome risks) as 
suggested by their case-mix.  Expected outcome rates for any facility or grouping of 
patients are based on the characteristics of those patients and a model of the relationship 
between patient characteristics and outcomes. 
 
“True” patient severity upon admission cannot be directly measured.  Instead, it must be 
inferred from the available data’s recorded patient characteristics.  Administrative billing 
data, compiled after treatments are completed, are the data most readily available for 
these kinds of large scale analyses.  These data, optimized for reimbursement purposes 
and often only secondarily for quality analysis, are prone to inconsistencies and 
variations in coding that can distort “true” severity.  Incomplete coding such as omission 
of secondary diagnosis codes can erroneously make patients appear healthier.  
Conversely, overly aggressive coding can give an inflated impression of severity and 
complications.  Often the “real” picture upon admission can not be easily crafted from the 
records.  
 
 
                                                 
4 “Outcome” is a term of art that includes a range of observable performance measures beyond mortality 
and morbidity.  Length of stay and treatment costs can be considered “outcomes,” since they are indicators 
of efficiency as well as efficacy. 
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Patient health status at the output end of the care process is not unambiguous. As 
previously described, discharge policy can affect mortality rate and length of stay. 
Moreover, discharge codes do not fully reflect patients’ health condition.  Being 
discharged home does not necessarily equate to fully recovery of the patient. Some 
patients may be re-admitted shortly. CareScience clients’ data show that about 10% of 
patients are re-admitted to hospital within 30 days after they have been discharged. 
Readmission information is unavailable in public data sets.  
 
Due to imperfect information, risk adjustment is subject to limitations.  Nevertheless, it 
remains a widely accepted approach for measuring hospital performance by controlling 
for patient characteristics and allowing benchmarking to compare apples to apples. 

 

1.5 CareScience Risk Assessment Method 
The CareScience risk assessment model is estimated statistically by regression analysis of 
a defined population of hospital discharges.  The population can be restricted to a single 
hospital over a quarter or can encompass a broad range of hospitals across the country 
over several years.  The more encompassing the population, the broader is the basis for 
comparison.  Basing the benchmark as broadly as possible permits comparisons of 
hospitals and their physicians across all possible markets and locations.  On the other 
hand, benchmarking on the experiences of a small region restricts comparisons to the 
hospitals and physicians of that region alone. 
 
CareScience calibrates its model of hospitalization outcomes and related performance 
measures on the maximum amount of discharges from both private and public sources.  
The aim is to construct a set of parameter estimates (coefficients or beta values) for each 
of six measures that can be used to predict outcome rates for any set of patients in 
CareScience products. The six outcomes include in-hospital mortality, major morbidity, 
complications, length-of-stay, charges, and costs.  Predicted rates for these outcomes can 
be compared to the actual rates to evaluate performance for any set of patients based on 
their case-mix within a particular facility, service line, diagnosis, age grouping, or 
treating physician grouping. 
 
This approach has a number of advantages over the alternative method of calibrating the 
risk assessment on the basis of the individual hospital or hospital system.  First, a 
universally calibrated model makes it possible to generate predicted outcomes (risks) and 
other relevant statistics without rerunning regressions for every new set of patients. That 
reduces processing time of new data and even potentially allows real-time processing of 
discharges Second, outcome risks that are generated by a set of universal beta values can 
be used to compare patients within different facilities and physician groupings regardless 
of where they practice.  Third, any set of discharges can be analyzed, no matter how 
small, because the model parameters themselves do not need to be estimated from the 
analysis data set.   

 

II. Risk-Assessment Model Specification 
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2.1 Functional Form 
The purpose of the model is to generate expected or “standard” outcomes (risks) 
under typical care, based on a patient’s characteristics and socioeconomic factors.  
Patient-level risks for a variety of target outcomes are assessed via a stratified 
multiple regression model. The model has the following functional form: 
 
         , ijklxy ijklklijklijkl ∀+= εβ  
 
where yijkl is the value for each outcome l at patient level i and provider j and 
principal diagnosis k.  xijkl is a vector of patient characteristics and socioeconomic 
factors.  βkl is the marginal effect of the independent variables on the outcome 
measure, and εijkl is the random error component of the model.  The strata (k) are 
roughly based on 3-digit level ICD-9-CM diagnosis codes.  Rare and insignificant 
diagnoses are rolled up into broad diagnosis groups (BDGs), which are defined in the 
ICD-9-CM book. There are a total of 142 disease strata and over 800 equations in the 
model.  Details about the stratification can be found in Appendix D (Technical 
Details about Model Specification).  
 

2.2 Dependent Variables 
The following outcome measures are modeled separately with their own set of 
specifications: 
            Mortality 
            Complications 
            Morbidity 
            Length of Stay 
            Total Charges 
            Comparative Costs 
  

2.2.1 Mortality 
At the patient level, mortality is captured by discharge disposition.  Category ‘20’ is 
designated for patients who expired. The ccms_exp_flag field in the CareScience 
database indicates the mortality status (expired/alive) of patients based on their 
discharge disposition.  Patients who were transferred to another acute care facility 
(with discharge disposition code ‘02’) have an indeterminate mortality value and are 
consequently excluded from mortality analyses.  The mortality risk for these patients 
is therefore set to ‘null.’ Exemptions about Mortality outcomes are included in 
Appendix D (Technical Details about Model Specification).  
 

2.2.2 Complications 
Complication is defined as the probability of having at least one complication.  It is 
calculated as  
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where m is the number of secondary diagnosis; and pij is the probability of 
complication for the jth secondary diagnosis given principle diagnosis i. The 
probability that any given secondary diagnosis is a complication of a given principle 
diagnosis is determined ex ante by clinical experts. The method is called 
Comorbidity-Adjusted Complication Indices (CACI), which is elaborated in the 
section of Clinical Knowledge Base. The algorithm of calculating complications is 
described in Appendix D (Technical Details about Model Specification).  
 

2.2.3 Morbidity 
Morbidity is defined as the probability of having at least one morbid complication.  It is 
calculated in a similar manner as complications, however, only secondary diagnoses rated 
‘D’ or ‘E’ are included in the calculation.  Consequently, it has a smaller value than that 
of complications. The same rules that govern calculating complications are applied in 
calculating morbidity.  
 

2.2.4 Length of Stay 
Length of Stay (LOS) is defined as the number of full days a patient stays in the hospital.  
It is calculated as the difference between discharge date and admission date.  The shortest 
valid LOS is one day.  If a patient is admitted and discharged on the same day and coded 
as inpatient, LOS is counted as one day.  If a patient stays in the hospital for more than 
100 days, the case, as an outlier, is dismissed from LOS analysis.  
 

2.2.5 Total Charges 
Total Charges represent the dollar amount charged to a patient during the hospital stay.  
The field is directly available in both private and public data.  If the dollar amount is 
greater than 500, 000 USD, the case is excluded from both charge and cost analysis.  
 

2.2.6 Comparative Costs 

The conversion of charges to costs is a simple matter of multiplying the patient-level total 
charges from the discharge abstract (typically the UB-92 record) by the facility-specific 
cost-to-charge ratio.  The computation is performed for each individual patient stay in the 
hospital.  To calculate costs, total charges must be recorded (and fall within trimming 
guidelines). The calculation is performed during early data processing prior to 
CareScience risk assessment. 

 

2.3 Independent Variables 
The following patient characteristics and socioeconomic factors comprise the set of 
regressors. 
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Age (quadratic form)   
Birth weight (quadratic form, for neonatal model only) 
Sex (female, male, unknown) 
Race (white, black, asian-pacific islander, unknown) 
Income (median household income within a zip code reported by US Census Bureau) 
Distance traveled (the centroid-to-centroid distance between the zip code of the 
household and the zip code of the hospital or provider, represented as a relative term) 
Principal diagnosis (terminal or three digit ICD-9-CM code, where statistically 
significant) 
CACR5 comorbidity scores (count of comorbidities within each of five severity 
categories on the CACR Likert scale) 
Defining diagnosis (three digit ICD9-CM code for neonatal model only) 
Cancer status (benign, malignant, carcinoma in situ, history of cancer, derived from 
secondary diagnoses) 
Chronic disease and disease history (terminal digit ICD9-CM diagnosis codes, such as 
diabetes, renal failure, hypertension, chronic GI, chronic CP, obesity, and history of 
substance abuse) 
Valid procedure (terminal ICD9-CM procedure codes, where clinically relevant and 
statistically significant) 
Time trend factor (to control for inflation specific to each disease in the inpatient 
hospital setting, derived from discharge date, for Cost and Charge model only) 
Admission source (Physician Referral, Clinic Referral, HMO Referral, Transfer from a 
Hospital, Skilled Nursing Facility or Another Health Care Facility, Emergency Room, 
Court/Law Enforcement, Newborn - Normal Delivery, Premature Delivery, Sick Baby, or 
Extramural Birth, Unknown/Other) 
Admission type (Emergency, Urgent, Elective, Newborn, Delivery, Unknown/Other) 
Payor class (Self-pay, Medicaid, Medicare, BC/BS, Commercial, HMO, Workman’s 
Compensation, CHAMPUS/FEHP/Other Federal Government, Unknown/Other) 
Discharge disposition (Home or Self Care, Short-term General Hospital, Skilled Nursing 
Facility, Intermediate Care Facility, Other Type of Institution, Home under Care of 
Organized Home Health Service, Left against Medical Advice, Discharged Home on IV 
Medications, Expired, Unknown/Other) 
Facility type (Acute, long-term, Psych.) 
 
Risk factors used in the CareScience risk assessment model are tailored to specific patient 
subpopulations and outcomes.  The use of the following risk factors may vary depending 
on the specific subpopulation and outcome evaluated:   

• diagnosis detail 
• significant comorbidities 
• defining procedures  
• birth weight (used instead of age for neonates) 
• time trend (controls inflation for costs and charges) 
• discharge disposition (excluded in mortality analyses) 

                                                 
5 Comorbidity Adjusted Complication Risk – Brailer DJ, Kroch E, Pauly MV, Huang J. Comorbidity-
Adjusted Complication Risk: A New Outcome Quality Measure, Medical Care 1996; 34:490-505. 
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The following table summarizes the independent variables for specific outcomes and 
subpopulations. Some independent variables are defined and selected according to 
clinical relevance, and some are transformed through mathematic method. The 
methods are elaborated in Appendix D (Technical Details about Model 
Specification).  
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Model Specification Summary                 
                   
Note: BW=Birth Weight, AS=Admission Source, AT=Admission Type, PC=Payor_Class, DD=Discharge_disposition, Comor.=Comorbidities 
    VP=Valid Procedure, TT=Time_Trend, Dx=Diagnosis, T=Terminal Digit Code, 3=Three Digit Code       
  Dependent Variable 

Outcome 
Disease 
Groupings Age BW AS AT PC DD PDx Comor. Chronic Cancer

Defining 
Dx VP TT Sex Race Income Distance 

Mortality Major Dx Y   Y Y Y   T Y Y Y   Y   Y Y Y Y 
Mortality Broad Dx Group Y   Y Y Y   3 Y Y Y   Y   Y Y Y Y 
Mortality Normal Neonates     Y Y Y           Y     Y Y Y Y 
Mortality Immature Neonates   Y Y Y Y           Y     Y Y Y Y 
Mortality Organ Transplants Y   Y Y Y     Y   Y       Y Y Y Y 
Complication Major Dx Y   Y Y Y Y T Y Y Y   Y   Y Y Y Y 
Complication Broad Dx Group Y   Y Y Y Y 3 Y Y Y   Y   Y Y Y Y 
Complication Normal Neonates     Y Y Y Y         Y     Y Y Y Y 
Complication Immature Neonates   Y Y Y Y Y         Y     Y Y Y Y 
Complication Organ Transplants Y   Y Y Y Y   Y   Y   Y   Y Y Y Y 
Morbidity Major Dx Y   Y Y Y Y T Y Y Y   Y   Y Y Y Y 
Morbidity Broad Dx Group Y   Y Y Y Y 3 Y Y Y   Y   Y Y Y Y 
Morbidity Normal Neonates     Y Y Y Y         Y     Y Y Y Y 
Morbidity Immature Neonates   Y Y Y Y Y         Y     Y Y Y Y 
Morbidity Organ Transplants Y   Y Y Y Y   Y   Y   Y   Y Y Y Y 
Length of 
Stay Major Dx Y   Y Y Y Y T Y Y Y   Y   Y Y Y Y 
Length of 
Stay Broad Dx Group Y   Y Y Y Y 3 Y Y Y   Y   Y Y Y Y 
Length of 
Stay Normal Neonates     Y Y Y Y         Y     Y Y Y Y 
Length of 
Stay Immature Neonates   Y Y Y Y Y         Y     Y Y Y Y 
Length of 
Stay Organ Transplants Y   Y Y Y Y   Y   Y   Y   Y Y Y Y 
Cost Major Dx Y   Y Y Y Y T Y Y Y   Y Y Y Y Y Y 
Cost Broad Dx Group Y   Y Y Y Y 3 Y Y Y   Y Y Y Y Y Y 
Cost Normal Neonates     Y Y Y Y         Y   Y Y Y Y Y 
Cost Immature Neonates   Y Y Y Y Y         Y   Y Y Y Y Y 
Cost Organ Transplants Y   Y Y Y Y   Y   Y   Y Y Y Y Y Y 
Charge Major Dx Y   Y Y Y Y T Y Y Y   Y Y Y Y Y Y 
Charge Broad Dx Group Y   Y Y Y Y 3 Y Y Y   Y Y Y Y Y Y 
Charge Normal Neonates     Y Y Y Y         Y   Y Y Y Y Y 
Charge Immature Neonates   Y Y Y Y Y         Y   Y Y Y Y Y 
Charge Organ Transplants Y   Y Y Y Y   Y   Y   Y Y Y Y Y Y 
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2.4 Semi-log Model 

Length-of-Stay (LOS), Costs, and Charges are distributed with a rightward (positive) skew. 
Applying linear regression to data with skewed distributions of dependent variables gives rise to 
a number of pathologies, including inefficient and often biased, parameter estimates and 
predictions outside logical bounds  (e.g., negative values for LOS and costs).  When outcome 
measures are not symmetrically distributed, analysis of performance can be disproportionately 
influenced by outliers and extreme cases.  A robust solution is to take the natural log of the 
dependent variable, which results in an approximately symmetric distribution and contracts the 
outliers inward toward the center of the data (i.e., area of greatest density within the 
distribution).. It also ensures that all predicted values will be positive. (No matter how negative 
the log value is, taking the anti-log to restore the values will guarantee that they are positive.) 
Detail on the Semi-log model can be found in Appendix B (Semilog Modeling) 
 
Geometric vs. arithmetic means: 
The arithmetic mean is the simple average, computed by adding up all values (xi) in the sample 
and dividing by the number of such values (n):   

arithmetic mean  x  = ∑
=

n

i
ixn 1

1   

The geometric mean follows the same principle, but instead of adding the values and dividing by 
n,, they are multiplied together and the nth root of the product is taken: 

geometric mean  x~  = n
n

i
i∏

=1

x  

An equivalent way to compute the geometric mean is to take advantage of natural logarithms.  
Defining y as the natural log of x [y = ln(x)], the geometric mean is the anti-log (exp) of the 
arithmetic mean of y:  

geometric mean  x~ = exp( y ), where y  = ∑
=

n

i
iyn 1

1  

Because the geometric mean is based on log values and the log transformation tends to draw 
extreme values toward the center of the data, the geometric mean is more “robust” than the 
arithmetic mean; the geometric mean is less influenced by outliers and consequently is a better 
representation of the data distribution.  In the Care Management System tool, Length-of-Stay 
(LOS), Costs, and Charges are reported as geometric means. 

 

 
 
III. Model Calibration 

 

3.1 Data Source 
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Three data sources are employed in CareScience risk model calibration. They are MedPAR, All-
Payor State data, and private data.  
MedPAR consists of approximately 12 million inpatient visits that are covered by Medicare 
each year. MedPAR covers all U.S. states and territories and is publicly available. Many research 
projects and publications are based on MedPAR. CareScience acquires the pre-processed data 
annually from Solucient. The time range of the data is based on CMS’s fiscal year, which 
contains the fourth quarter of the previous year and the first three quarters of the current year. 
MedPAR data is generally available with one year lag time.  (e.g. Year 2004 data were available 
by the end of 2005.)  MedPAR covers around one-third of all hospital inpatients; and almost all 
of its patients are 65 plus. Consequently, some specialties such as Pediatrics and Obstetrics are 
practically absent.  
 
All-Payor State data includes all inpatients regardless of payor type or other restrictions, thus 
providing an advantage over MedPAR data.  Additionally, All-Payor State data contains a larger 
volume: roughly 20 million records from around 2700 hospitals.  Despite these advantages, the 
data set has limitations.  The most noticeable of these is that the data are less geographically 
representative. All-Payor State data comes from fewer than 20 states located mostly on the 
coasts.  In addition to this handicap, the data set lacks a continuum of data for each of the states, 
since changing regulatory laws often affect the availability of states’ data from year to year.  This 
lack of continuous data can severely limit the feasibility of longitudinal studies. CareScience 
acquires the pre-processed data annually from Solucient. There is usually a two-year lag. 
Because State data is released by individual states with their own data specification, the data is 
often inconsistent across states. As a result, All-Payor State data requires significant internal 
resources from Data Management Group and Research to validate and improve the quality.  The 
lag time in release also prevents All-Payor State data from being chosen as the model’s 
calibration database, because the standards of hospital care are in constant flux (reflected in part 
by new codes appearing every year in order to reflect changes in diagnosis, procedure, DRG, 
etc).  Despite the aforementioned limitations, All-Payor State data remains a good choice for 
hospital ranking because of its volume and completeness of disease segments. It also serves as a 
reference data set to CareScience’s private data.  
 
In addition to the public data sets, CareScience collects private data from clients. Client data is 
submitted in compliance with CareScience’s Master Data Specifications (MDS), ensuring its 
consistency and quality.  The data are updated frequently with three to six months lag and offer a 
much richer contents that allow exploration of new model specifications. Annually there are 
around two million records from 140 hospitals dispersed in 35 states. Because the client base is 
continuously in change, number of hospitals and records may fluctuate each year. The general 
trend is increase. The quality and richness of the client data make it an ideal calibration database 
despite its being significantly smaller than the two public data sets.  

 

3.2 Missing Outcomes and Independent Variables 
As with most large databases, some records may lack one or more data elements. When outcome 
is missing, the record will be automatically removed from the analysis. When one or more 
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independent variables are missing, the algorithm will set risk score to null, or explore feasible 
alternatives.  
 
Principal Diagnosis, Age, and Birth Weight (for immature newborns) are mandatory elements in 
the risk assessment model. They are considered essential, non-replaceable risk factors. Missing 
any of them will result in exclusion from the risk assessment.  Time_Trend is a mandatory field 
to predict Charges and Costs. Omission of this value results in ‘null’ risk scores for Cost and 
Charge outcomes for these specific cases.  
 
For most categorical variables, such as Admission Source, there is an ‘Unknown’ category 
designated for unrecognizable or missing values. Given ‘Unknown’ is due to random error, the 
missing value is most likely the category with the highest frequency. For example, ER is the 
most common admission source. If a patient’s admission source is missing, ER would be the 
most likely admission source. In risk modeling, the most common category is often used as the 
reference group.  Grouping the ‘Unknown’ category with the most common category (the 
reference group) is thus justifiable, however, the high portion of ‘Unknown’ values risk diluting 
the real characteristics of the reference group. Due to tight quality control, ‘Unknown’ values are 
very rare in private client data.  In public data, the missing portion ranges from a couple of 
percent to around ten percent.  It is therefore necessary to check the distribution of the data 
before calibration. In general, the ‘Unknown’ values should not represent more than one third of 
the reference group. 
 
Income and Relative Distance are derived from zip code information.  In the case of Income, the 
patient’s residence zip code is used.  For Relative Distance, both the patient’s residence zip code 
and the hospital zip code are employed.  If the patient’s zip code is missing, the average Distance 
and Income of all patients in that hospital will be applied.  In cases where both patient and 
hospital zip codes are unavailable, the Relative Distance shall be set to one, and the national 
median income will be applied. 
 

3.3 SAS Programming 
Since 2003, model calibration has been executed by SAS-based programs that are created and 
maintained by the Research Dept.  The SAS-based programs replaced the previously used 
CareScience Regression Language (CRL), which was maintained by the Software Engineering 
Dept.  
 

3.3.1 Data Transforming 

CareScience’s database is on Oracle platform. The database schema and table structure are 
designed for specific product and its related data processing tool. It is essential for Research to 
pull out key data elements and transform them into SAS-recognizable data sets. The technical 
details are elaborated in Appendix E (Technical Details about SAS Programming) 
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3.3.2 Model Selection 

Not all variables carry the same weight. Some variables may have little impact on risk scores. 
Some variables may have impact on only specific outcome. CareScience’s model calibration 
employs Stepwise selection to identify significant variables at 0.10 level, which is close to the 
upper limit that SAS recommends. Alternative selection options are discussed in Appendix E 
(Technical Details about SAS Programming). 
 
With Stepwise option, variables are added to the model one at a time with the program selecting 
the variable whose F statistic is the largest and also meets the specified critical significance.  
After a variable is added, the stepwise method inspects all variables in the model and deletes any 
whose F statistic fails to meet the specified significance threshold.  Only after the check is made 
and the necessary deletions accomplished can another variable be added to the model.  This 
process effectively reduces the possibility of multicollinearity issue, which is caused by highly 
correlated independent variables.  The stepwise process ends when the F statistics for every 
variable outside the model fail to meet the significance threshold while the F statistics for every 
variable in the model satisfy the significance criterion.  Alternatively, the process ends when the 
next variable to be added to the model is the one just deleted from it.   
 
Due to the selection criteria, the number of selected independent variables ranges from several to 
dozens, depending on outcome and disease. The R-Square of the model may be lower than a full 
model without any restriction. But the parameter estimates from the selected model are far more 
robust than an over-fitted full model. In out-of-sample prediction, robust parameter estimates 
generate reliable risk scores.  
 
Public data sets are always calibrated on themselves. No parameter estimates from their 
calibration are used to assess other data sets. Therefore, a full model is preferred because it 
provides higher R-Square.   
 
Regardless of its significance Time Trend is exempt of stepwise selection. It is forced into the 
Cost and Charge models by an ‘include’ option in the program. Internal studies have 
demonstrated that Time Trend is a strong predictor for measuring inflation rate for most diseases. 
The average inflation rate is around 8.8%.  For the 142 disease strata, Time fails to meet the 0.10 
significant level in only one instance.  
  
 Chronic conditions and Comorbidities are restricted to positive-only parameter estimates 
according to their clinical attribute.  
 
 

3.3.3 Macro Function  
It is a monumental task to manipulate millions of records with hundreds of fields and 
subsequently run more than 800 regression equations through SAS programming.  In the current 
model, regression equations are specified distinctly depending on disease and outcome. 
Regression coefficients and covariance matrices are then reshaped to fit the structure of the 
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analytic program’s beta tables.  Given the enormity of the process, it is essential to implement 
SAS Macro language, which streamlines the programming and makes it at least partially an 
automatically executed program. The technical details about the Macro processing are elaborated 
in Appendix E (Technical Details about SAS Programming).  
 

3.4 Beta Tables 

Beta tables include a coefficients table (Beta table), a covariance table, and a regression 
information table.  All three tables are initially generated by the model calibration process and 
then are manipulated to fit specific formats.  These tables comprise the key components of 
CareScience’s risk assessment tool.  
 

3.4.1 Regression Information Table 
As its name suggests, the regression information table summarizes the results of model 
calibration.  For each model equation, regression information reports R-square, root mean square 
error (RMSE), number of selected independent variables, and the number of valid records in the 
calibration data.  
 
R-square varies substantially across outcome and disease.  Of the outcomes measured, mortality 
often suffers from consistently low R-square values, a susceptibility that can be attributed to two 
reasons.  First, expiration is rare among patient discharges.  At the hospital level, the mortality 
rate hovers around 2-3 percent.  Most expiration cases are concentrated in a few high-risk 
diseases, such as Septicemia, AMI, and Lung Cancer.  Furthermore, when mortality is an 
infrequent occurrence within a low-risk disease, it is more difficult to predict.  The second reason 
is that the model calibration relies on claim data, which does not cover all clinical factors.  
Because the data are designed for billing purposes, it is unsurprising that financial outcomes such 
as LOS, Costs, and Charges have higher R-squares than for mortality.  (R-square for the 
efficiency outcomes, LOS, Costs, and Charges can be as high as .70).  
 
RMSE is used, along with the Covariance Table, to calculate standard error associated with 
predicted risk at the patient level. 
 

3.4.2 Beta Table 

Beta table includes all coefficients that are significant at 0.10 level. Coefficient (Beta) can be 
interpreted as the risk factor’s marginal effect upon risk score. By applying a set of 
corresponding coefficients, risk score can be calculated for each outcome at patient level. This 
processing is handled within Data Manager (formerly VIMR and CRL, or CIA).  
 
To categorical variables, each coefficient is corresponding to one category. The coefficient 
shows the difference between that category and the reference category. For example, Hospital 
Transfer (04) is one category of Admission Source.  The coefficient for Hospital Transfer can be 
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interpreted as the change of risk relative to the reference group ER (07), the most common 
category of Admission Source.   
 
Regarding valid procedures and chronic conditions, each code is treated as a separate variable in 
the model. Their coefficients can be interpreted as the risk difference between patients having 
and not-having that code.  
 
For each model equation, the number of coefficients corresponds in both the Covariance and the 
Regression Information Table. This feature can be used as QA control during the manipulation 
of beta tables.   
 

3.4.3 Covariance Table 
The covariance table is derived from the covariance matrix of coefficients.  Due to Data 
Manager’s requirements, the matrix is reshaped into a two-way table, consisting of RowName 
and ColumnName.  The covariance table contains millions of values and is much larger than the 
Beta table.  Due to the legacy of an earlier tool (CRL), the correlation matrix of coefficients 
(X’X)-1 is actually used to compute standard error. Consequently, the covariance matrix has been 
transformed into correlation matrix in the ‘covariance’ table.  

 

3.5 Model Implementation Test 

Two steps are involved in a model implementation test.  The first is a technical test, which 
confirms that Data Manager (formerly VIMR and CRL, or CIA) correctly implements the beta 
tables to compute risks and the associated standard errors at the patient level.  The second is a 
clinical review, which validates outcome reports from the clinical perspective.   
 

3.5.1 Technical Test 
During model calibration, SAS regression procedures generate predicted values of dependent 
variables and standard errors for all observations if options are correctly specified.  The SAS 
output term ‘P’ (predicted) is equivalent to the risk in the Data Manager output while the SAS 
output term ‘STDI’ is equivalent to the standard error in Data Manager.  The SAS-generated data 
set can therefore serve as a convenient reference for the technical model implementation test.  
 
The technical model implementation test is conducted by Software Engineering and Quality 
Assurance Team, with Research and Data Management Group assisting them in assembling the 
data set. Research also consults on technical requirements, ensuring that the test data set has full 
coverage of all 142 disease groups (ccms_crl_group_by).  
 
The test data may be selected from one hospital or one hospital system that has a sufficient 
number of cases for all disease groups. A more conservative approach, however, is to randomly 
extract data from the entire calibration database by disease group.  The latter method guarantees 
full coverage of the data at a global level.  It is recommended that at least 1000 cases are pulled 
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for each disease stratum, however, for a few strata (e.g. DRG103), this may not be possible.  In 
these situations, all cases in the disease stratum should be included in the testing data set.  
 
It may take a couple of months, or longer, to complete the test. Research plays an essential role 
in the process. When there is a discrepancy between SAS score and analytics score, finding the 
reason or reasons requires extensive knowledge about the methodology as well as thorough 
understanding of database schema.  
 

3.5.2 Clinical Validation 
The main purpose of risk-assessment is to differentiate patients based on their individual 
characteristics.  Statistically, including more independent variables often increases R-square and 
creates more distinctive risk scores at the patient level.  However, a model with the highest R-
square may not have the best performance when coefficients are implemented in an out-of-
sample prediction and risk scores are extrapolated.  For instance, allowing more procedure codes 
in the model will certainly increase the model fit, but it may also result in inflated risk scores 
among patients treated by multiple significant procedures.  From a statistical perspective, a few 
outliers are acceptable and don’t exert much influence at the aggregate level, however, they may 
become a serious issue when grouped in CareScience front-end reports by certain criteria (e.g. 
DRG),   causing their risk scores to deviate far beyond conventional clinical wisdom.  A 
clinically based review can help identify problems such as this.  Since the front-end tool allows 
users to select virtually any combination of patients, extensive reviews by the Consulting team 
are required to avoid issues of clinically unfounded risk scores.  
 
Clinical reviews are also necessary to improve the quality of CareScience’s clinical knowledge 
base used in the model.  This knowledge base includes the comorbidity-adjusted complication 
indices (CACI), chronic condition designations, diagnosis morbidity designations, valid 
procedure designations, etc.  This information has been gathered over the course of many years 
and is continually reviewed and updated by internal and external clinical experts.  Despite these 
efforts, gaps in the knowledge base exist along with areas where the data contradict itself due to 
changes in treatment or coding practices.  Clinical validation of the model performance provides 
an opportunity to identify some of these problems and accordingly upgrade our clinical 
knowledge base.  
 
 
 

IV. Clinical Knowledge Base 
 

It would be a mistake to characterize the CareScience risk model as purely a statistical model.  
Clinical knowledge plays a key role from the beginning of data processing to the end of risk 
assessment.  The following section systematically examines the key components comprising the 
CareScience clinical knowledge base.  
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4.1 Comorbidity-Adjusted Complication Indices (CACI)  
CareScience uses a decision-theoretic model called Comorbidity-Adjusted Complication Risk 
(CACR) to track complications.  This model assumes a nonstandard definition of complications, 
defining them as conditions that arise during a patient's hospital stay.  By this construction, 
complications do not necessarily imply iatrogenic events or physician negligence.  
 
The CACR model is based on the assumption that most secondary diagnoses do not occur purely 
as comorbidities or as complications.  Instead, some proportion of each of these recorded 
secondary diagnoses represent conditions that emerge during a hospital stay while the remaining 
proportion represent conditions that were present when the patient was admitted (i.e., comorbid 
conditions).   
 
A comorbidity-adjusted complication index (CACI) is the probability that a given secondary 
diagnosis is a complication (condition developed during a patient's hospital stay) for a patient 
with a specific 3-digit ICD-9 principal diagnosis.  For example, the CACI for a secondary 
diagnosis of urinary tract infection with a principal diagnosis of simple pneumonia is 90%, 
indicating that for 90% of patients with this principal-secondary diagnosis pair, the urinary tract 
infection emerged during their inpatient stay.  For the remaining 10% of patients, the urinary 
tract infection was present at the time of admission.  CACI exists for most common principal-
secondary diagnosis pair combination and are assigned by Delphi6 panels of physicians.   
 
Because CACIs are probabilities, they can only operate effectively on aggregated data where 
they provide estimated complication rates.  CACIs cannot be used pinpoint which patients have 
specific complications within a given population. 
 
CACIs are periodically reviewed and reevaluated as a result of changes in medical practice, 
contestations, or additional information such as empirically derived "present on admit (POA)" 
data.   

 

4.2 Diagnosis Morbidity 

Diagnosis is one of the most important factors used to measure patient risk. CareScience risk 
model is stratified primarily according to principal diagnosis at the three-digit level. Principal 
diagnosis alone is able to explain a great portion of risk variations across all patient population. 
When principal diagnosis is the same, secondary diagnoses provide critical information to 
differentiate patient characteristics. Two clinical outcomes, Complications and Morbidity, are 
derived from secondary diagnoses.  Among the independent variables, comorbidities and chronic 

                                                 
6 The Delphi method, named for the famed Greek oracle, consists of several "rounds" of input and feedback.  In the 
first round, participants are asked for their independent judgment.  Once all responses are gathered, the mean 
response is posted.  In the second round, participants are given the chance to change their response in light of the 
group's mean. The revised mean is posted to begin the third round, and so on. 
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conditions are also derived from secondary diagnoses.  Because diagnoses have varying clinical 
significance, a five-level Likert scale was created to denote the severity or morbidity of each 
diagnosis.  
 
The morbidity Likert scale levels range from ‘A’ to ‘E’ with ‘A’ reserved for conditions that are 
least severe.  Secondary diagnoses in category ‘A’ possess minimal or no impact on patient risk.  
Typical diagnosis codes in this category include Headache (ICD9 Dx 7840), Backache NOS 
(ICD9 Dx 7245), and Diarrhea NOS (ICD9 Dx 78791).  Category ‘B’ and ‘C’ denote mild 
conditions that may impact patient risk and the course of treatment.  These conditions may 
increase length of stay and cost of treatment.  Most common secondary diagnoses fall into 
categories ‘B’ or ‘C.’  Diagnoses that are classified into category ‘D’ and ‘E’ are truly severe 
conditions (e.g. Oclsn, cer artery NOS w/infarction (ICD9_Diag_43491)) and sometimes life-
threatening.  These conditions may substantially increase probability of expiration and length of 
stay; patients with these conditions may require additional rescue treatment, and their costs of 
treatment may spike.  
 
Morbidity designations are always assigned at the terminal digit level of a diagnosis code.  For 
instance, uncomplicated type I DM (ICD9 Dx 25001) is classified into category ‘B’ while type I 
DM w/neuro (ICD9 Dx 25061) is considered more severe, thus designated into category ‘C.’ 
 
 The Diagnosis Morbidity Table was originally created to measure morbid complications 
(Morbidity: complications with morbidity designations of ‘D’ or ‘E’).  In 2003, the table was 
expanded to include all common secondary diagnoses at the terminal digit level.  With this 
expansion, the comorbidity score was broken into five categories, corresponding to the morbidity 
Likert scale.  This modification has substantially improved the model performance.  There are 
currently 514 secondary diagnosis codes in the table that account for about 80% of all secondary 
diagnoses.  The less common diagnosis codes are not dropped from analysis but instead grouped 
into category ‘U,’ which stands for ‘Unspecified.’  As the morbidity assignments’ normal 
distribution suggests, category ‘U’ diagnoses tends to share similar characteristics as the most 
common categories ‘B’ and ‘C.’ 

 

4.3 Chronic Diseases and Disease History 
A secondary diagnosis can either be a complication that developed after admission or a comorbid 
condition that existed before the patient was admitted.  A few secondary diagnoses are 
considered “pure” comorbidities.  These preexisting conditions can be identified by their 
complication probabilities of zero in the CACI table.  These diagnoses form the basis of the risk 
model’s chronic diseases list, which takes the form of an expanded disease-specific Chronic 
Condition Table. The expansion takes into account the volume of common chronic disease codes 
in each of the disease strata (ccms_crl_group_by).  To be included, a chronic disease code must 
occur among at least 1% of patients in a given disease stratum.  Less common codes still undergo 
CACI processing but are counted into one of the six comorbidity categories.   
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Because some chronic conditions are similar, they tend to have similar influence on patient risk 
assessment, e.g. 491.2x (obstructive chronic bronchitis), 493.2x (chronic obstructive asthma) and 
496 (chronic airway obstruction, NEC). These kind of chronic conditions are mapped to a 
common chronic condition code, and share the same coefficients. 
 
Diagnoses in the Chronic Condition Table are incorporated into the risk model as independent 
variables.  The following example shows how the algorithm works: 
 

 If a secondary diagnosis is on the list of chronic conditions for a given disease stratum 
and thus included in the Chronic Condition Table, the secondary diagnosis will not 
undergo CACI processing.  The diagnosis will not be counted in any of the six 
comorbidity categories.  Instead, it is treated as a separate independent variable with its 
own corresponding risk coefficient, which can be found in the beta tables assuming that 
it’s statistically significant.  If the corresponding coefficient can not found in the beta 
tables, the coefficient should be assigned a default value of zero.   The chronic condition 
has no impact on risk score, although the chronic condition is considered clinically 
relevant.  

 
For the purposes of reporting, all comorbidities and chronic conditions should be included in the 
comorbidity count of CareScience Quality Manager front-end reports.  The total number of 
comorbidities is calculated as the sum of CACI_Severity_Score_Cate_A to E and U plus the 
number of chronic conditions.  For comorbidity counts by severity category, chronic conditions 
are mapped to the appropriate morbidity level in the Diagnosis_Morbidity table and are then 
added to the corresponding CACI_Severity_Score categories. 
 
Since the CACI and Chronic Condition Tables are reviewed separately by different clinical 
panels, discrepancies between the two can arise.  Whenever one is updated, the other must be 
reviewed for consistency.  If discrepancies exist, they are resolved before the update becomes 
effective. 

 

4.4 Valid Procedure  

The ‘validity’ of a procedure is defined by its clinical proxy of patient characteristics and its 
statistical significance upon risk score. The validity is all about patient risk assessment. An 
‘invalid’ procedure has no influence on risk score because it lacks either clinical proxy or 
statistical significance. The method does not intend to judge whether a procedure is appropriate 
treatment to a patient. An ‘invalid’ procedure does NOT mean it is an un-appropriate treatment.  
 
To qualify for valid procedure candidacy for a given disease stratum, a procedure must satisfy a 
frequency criterion relative to that stratum.  The minimum frequency is defined as: 
 
0.05*N / EXP (LOG10(N) – 1), 
 where N is the number of cases in the disease stratum.  
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Procedures meeting this frequency requirement are then reviewed by the CareScience Clinical 
Expert Panel and classified into four categories.  Category 1 consists of procedures that are 
unequivocally included in the model estimation.  Most procedures in this category are considered 
defining procedures (e.g. ICD9 Px 361.x - Coronary Arterial Bypass Graft7) that are often 
administered upon admission.  Category 2 includes procedures that are considered for inclusion 
dependent on timing and combination with other procedures.  ICD9 procedure 4443 (Gastric 
bleeding endoscopic control) is one such example.  Use of this procedure within the first 48 
hours strongly suggests it is related to patient condition upon admission.  On the other hand, use 
of this procedure in the later stages of a hospital stay may indicate it is caused by an earlier 
treatment.  In the latter case, the procedure should not be included as a patient characteristic.  
Category 3 includes procedures whose model inclusion or exclusion remains unresolved due to 
clinical review disputation.  Most procedures in this category are diagnostic and therapeutic 
procedures. Category 4 consists of procedures excluded as risk factors because of coding 
variation or features masking attributes of the care process.  
 
Procedures are strong risk predictors, especially for length of stay, costs, and charges.  Allowing 
more procedures to enter the model certainly increases model fit, however, as previously 
discussed, a higher R-Square does not necessarily result in better model performance for out-of-
sample predictions. The number of procedures patients may receive can vary from zero to 
several dozen despite having the same principal diagnosis.  Whether a patient receives a 
procedure is determined by the patient’s clinical status, as well as the care provider’s judgment. 
Adding procedures without considering their clinical implications may introduce an omitted 
variable bias by inadvertently including provider attributes that should be excluded from risk 
assessment.  Moreover, coding practices vary across hospitals.  Some hospitals do not regularly 
record diagnostic and therapeutic procedures while others do.  Additionally, some hospitals 
record only the main procedures and leave out the linking minor codes. All of these 
considerations contribute to the polemic surrounding the use of procedures as risk factors.  
 
The current Valid Procedure selection process is conservatively designed and aimed at avoiding 
data noise to the maximum extent.  Consequently, the current Valid Procedure list is shorter than 
earlier versions with an emphasis on ‘defining procedures’ (Category 1) that are clinically 
relevant and seldom omitted from hospital data.  These procedures are minimally controversial.  
Category 2 procedures are only included in the model if their timing criteria are met, reducing 
the ambiguity between patient attributes and care provider effects.  The coding accuracy of these 
procedures, however, is less reliable than that of Category 1 procedures. 

 

4.5 Other Clinical Elements and Considerations 
 

4.5.1 Relative Value Unit 

                                                 
7 All CABG procedures are rolled up into a three-digit code 361 in the model due to their similarities. 
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‘Relative Value Unit’ or RVU describes a procedure’s intensity of resource usage.  Thus, 
significant procedures such as coronary arterial bypass grafts (CABGs), which demand greater 
resources than minor procedures, possess greater RVUs.  Although RVUs may seem to offer 
useful risk assessment information, they are not patient characteristics but instead reflections of 
the care provider’s resource usage.  For example, consider two AMI patients, one receiving a 
CABG (RVU 56.5) and the other receiving Mechanical Ventilation (RVU 1.89).  Does the high 
RVU of the CABG procedure indicate that the condition of the first patient is worse than that of 
the second who is treated with a low RVU procedure?  Although it could be argued that greater 
resources are only used when needed (i.e., the condition of the first patient must be more severe), 
the answer is probably “no.”  The high RVU of CABG only indicates that the hospital allocated 
more resources to the first patient.  In terms of severity, the condition of the second patient is 
conceivably graver as suggested by the rescue procedure.  For this reason, RVUs are not directly 
incorporated in the risk model.  They are poor predictors of clinical outcomes, and their 
predicting power for financial outcomes is already largely captured by valid procedures.  
 

4.5.2 “Do Not Resusitate” Orders 
‘Do Not Resusitate’ (DNR) orders instruct hospital staff not to attempt life saving procedures or 
treatments should a patient’s condition turn critical.  In most circumstances, once a DNR order is 
issued, the patient expires within a few days.  In certain cases, however, the patient actually 
displays signs of returning to normal status after supports are withdrawn in which case the DNR 
order is dismissed and supports restored.  A crucial study at Cooper Health System revealed that 
patients receiving DNR orders represent a large percentage of all expired patients.  These 
findings suggest that consideration of DNR orders may significantly alter the overall picture of 
hospital expiration.  More sophisticated analyses with data gathered from a range of hospitals 
may help improve the accuracy of the mortality model. This possibly raises the following 
questions:  1) Does a common guideline for DNR orders exist across hospitals? 2) What are the 
implications of DNR orders issued at different stages of the hospital stay in terms of patient 
characteristics? 3) What is the interpretation of the DNR on/off switch from a clinical 
perspective? 4) What kind of role does a DNR order play in the conventional measure of 
mortality rates? Further study in this field is needed before DNR becomes a part of CareScience 
risk assessment model.  

 
 
 

V. Statistical Significance 
 
To assist users in interpreting outcome comparison reports for a targeted “analysis set” of cases, 
CareScience tool provides an estimate of the statistical significance of each outcome deviation 
(actual – expected).  A “significance flag” indicates the probability that the results could have 
occurred randomly if there were not a true underlying effect.  In the front-end reports, a double 
asterisk (**) indicates 90% significance while a single asterisk (*) indicates 75% significance.  
Large deviations tend to be significant, except when great uncertainty surrounds expectations for 
cases in the analysis set.  The choice of relatively “low” significance levels (75% and 90% as 
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opposed to the frequently used 95% and 99% levels) reflects the purpose of the reporting tool – it 
is highly sensitive but not very specific in tolerating false positives to avoid false negatives. 
 
Statistical significance depends on the prediction error of the CareScience risk model, which 
derives from the properties of ordinary least squares regression analysis.  Prediction error reflects 
how well the model fits the population on which it is calibrated.  Hence, it is a characteristic of 
the model calibration and not purely a feature of the group of patients in the analysis set.  As a 
practical matter, prediction error (hence, statistical significance) can be computed for any 
number of cases in the analysis set, even just one case. 
 
The basis for computing statistical significance is to aggregate (as described below) the case-by-
case prediction error.  Just as the predicted outcome risk for each case is based on that patient’s 
characteristics as processed by the CMS model, the model generates a prediction error for each 
case.  The prediction error for the group of patients in the analysis set is derived by aggregating 
the cases in the analysis set. 
 
This aggregation poses a challenge, because it involves combining the uncertainty around the 
predicted value (risk) and the imprecision of the observed outcome value, especially when the 
number of cases in the analysis set is small.  For this reason, one must be cautious in interpreting 
“significant” deviations when the number of cases in the analysis set is small.  In such cases, the 
conclusion that the deviation is “significant” is based on an assumption that the observed rate 
is measured with little or no error.  Under this assumption all uncertainty in the deviation 
greater than a “real” opportunity is attributed to the prediction error. The assumption may no 
longer be true when the number of cases is too small. A conventional suggestion of minimum 
case count is around 15 – 20. If the deviation between the raw and risk (expected) values is large 
relative to the prediction error, then the deviation computed from the analysis group is not likely 
to be due to pure chance.  
 
Remember that the prediction error is based on a model calibration on thousands, if not tens of 
thousands of patient observations.  On the other hand, the number of cases used in certain 
analysis sets (such as the number of patients treated by a chosen physician for a particular 
condition) can be quite small.  For this type of analysis, the raw mean outcome is based on a 
relatively small sample of cases, which makes the assumption of low measurement error less 
plausible.  In such circumstances, the user must interpret the appearance of significance flags 
with caution, since the cases in the analysis may be idiosyncratic. 

 

5.1 Claim-level Computation 

Recall that standardized measures (risks) are calculated using the ordinary least squares (OLS) 
regression model: 
 

          ,ˆˆ ijklxy klijklijkl ∀= β  
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The following subscripts provide clarity to the notation: 
 
  i = claim_id (each row in the patient table) 
  j = provider or grouping 
  k = ICD-9-CM principal diagnosis (3 digit) 
  l = outcome (mortality, length of stay, charges, cost,    
   complications, complication morbidity) 
\ 

Hence, ijklŷ 8 is the predicted value for each outcome, l, at the patient level, i, for each provider, j, 

and diagnosis, k.  ijklx  is a vector of patient characteristics and other severity measures that are 
outside the provider’s control, including clinical factors, patient demographic characteristics, and 

patient selection factors.  klβ̂  is the marginal effect of the independent variables on the outcome 

measure. ijklx  and klβ̂  are of dimension q equal to the number of linearly independent regressors 
(including the number of distinct responses for each categorical variable). 
 

The goal of this effort is to calculate a confidence interval around each ijklŷ  to determine whether 
the observed raw value is “close” to the predicted value and assess the effect of the risk factors 
on the patient outcome.   The confidence interval, 100(1-α)% , around each individual patient 

level predicted value ijklŷ  is calculated as  
 

2
)ˆ(ˆ αtysepy ijklijkl ⋅±

9  
where the standard error of the predictor is  
 

  
1)'()ˆ( 1 +′= −

ijklklklijklijkl xXXxsysep
 

 
and  

klkl qn
SSRs
−

=
.   

 
SSR is the sum of squared residuals from the fitted regression line, nkl is the number of 
observations for principal diagnosis k for outcome l, and qkl is the number of estimated 
regression coefficients for diagnosis k and outcome l. 
                                                 
8 For the sake of consistency, this description carries the full range of subscripts, since outcome measures are 
calculated by principal diagnosis for each patient and each outcome and then aggregated to the desired group level. 
9 Note that we aggregate individual standard errors that include the random error in the population.  Without the 1, 

ijklklklijklijkl xXXxsysef ′= −1)'()ˆ( , represents only the sampling error around the fit of the regression line, 

which is generally much smaller. 
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5.2 Aggregation 
The challenge arises when aggregating the standard errors to characterize any targeted grouping 
of patients, such as all patients admitted by physician j. 
 

The expected value for a given outcome aggregated to the provider level, jlŷ , is the average of 
the patient level expected values for that provider and outcome.  Mathematically it is expressed 

as, 
∑=
ik

ijkl
jl

jl y
n

y ˆ1ˆ
, where njl = the number of patients treated by provider j across all diagnoses, 

and l is the relevant outcome.10   This is compared with the average of the raw values for the 

same grouping, 
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, where yijkl are the actual outcome values.  
The estimated variance of the provider level estimator is  
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In CareScience suite of products, we report a deviation score that represents the difference 

between the average observed and expected values for each outcome, jljljl yyd ˆ−= , where djl is 
the provider level deviation score.  To determine the confidence interval around this deviation 
score, we estimate the variance, V(djl), around it.  The confidence interval allows us to gauge 
whether the study group’s deviation could possibly be zero, indicating no significant difference 

between the observed and expected outcomes.  Given that jljljl yyd ˆ−= , the variance of the 

deviation score is V(djl).  
)ˆ()( jljljl yyVdV −=  which can be rewritten as 

)ˆ,(2)ˆ()()( jljljljljl yyCovyVyVdV −+= . 

                                                 
10 In general, njl =nj except where certain cases are excluded for a given outcome.  For example, if a physician treats 
a certain number of cases in a period in which some of those cases were not in a diagnosis that observed at least one 
death, the total number of cases, nj will be different for that provider’s LOS risk than for his mortality risk.  That 
said, using the new method developed to fill null values with the mean risk ensures that njl will always equal nj 
whenever observations are complete. 
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However, we don’t know the covariance of jly and jlŷ .  We cannot calculate this in Data 

Manager, since jly and jlŷ  are aggregated to the provider level and are therefore provider 
dependent.  We also cannot assume that the mean raw outcome rate is independent of the mean 
risk-adjusted outcome rate, which would yield a covariance of 0.  Therefore, for the purposes of 

this analysis, we will treat jly , the mean observed outcome rate for the provider, as non-

stochastic or a non-random variable.  Given this simplification, jly  is simply a point rather than 

an estimator with a distribution and therefore has no variance and no covariance with jlŷ , the 
mean risk-adjusted outcome rate for the provider. 
 

Given this simplification, the variance of the deviation score reduces to )ˆ()( jljl yVdV = , 
and we can test the null hypothesis that the deviation is equal to zero: 
 
Ho: djl = 0  
    versus the alternative hypothesis  Ha: djl ≠ 0. 
 
Rejection of the null hypothesis indicates a significant difference between the observed and 
expected outcome measures.  Since we generally work with small sample sizes, we perform a t-

test on the null hypothesis.  More specifically, we calculate a t statistic, 












 −
=

)ˆ(
0

jl

jl
jl yV

d
tα

, with 
∑−

k
kqn

 degrees of freedom, where n refers to the total number of observations in the dataset 

and 
∑

k
kq

 is the total number of estimated coefficients across all diagnosis groups. 
  

This computed statistic is compared to the critical value for the t distribution with 
∑−

k
kqn

 
degrees of freedom and the desired alpha level. 
 
As a practical matter, the degrees of freedom calculated in this manner will almost always be in 
the hundreds or thousands, which brings the test statistic to its limiting distribution, the normal.  
On the other hand, the number of cases used in a narrow aggregation, such as the number of 
patients treated by a chosen physician for a particular condition, can be quite small.  For this type 
of analysis, the raw mean outcome is based on a relatively small sample of these N cases and has 
a t-distribution with N-1 degrees of freedom.  This becomes the relevant number of degrees of 
freedom in conducting a test for statistical significance. 
  
All deviation scores will have an indicator of whether the deviation is statistically significantly 
different from zero. For example, a **(90% significance level) indicates that there is less than a 
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10% probability that the deviation (standardized - raw) is due entirely to chance.  Hence, we can 
reject the null hypothesis of zero deviation with a 10% chance of a (type I) error.  

 

5.3 Environmental Description 
1. The application reports two distinct levels of significance, 75% and 90%. 
2. Significance levels are not user-controlled and are therefore standard for all clients.   
3. Significance flags are indicated by the graphic “*.” 
4. A single asterisk (*) indicates that a deviation is significantly different from zero at the 75% 

confidence level while a double asterisk (**) signals that a deviation is significantly different 
from zero at the 90% confidence level.  Descriptions of these significance notations appear 
on every deviation report.  Deviations that round to 0.0 do not receive a flag. 

5. The Data Manager program has been modified to calculate the standard error for each 

outcome at the patient level predicted value, 
1)'()ˆ( 1 +′= −

ijklklklijklijkl xXXxsysep
.   

6. The program’s front-end scripts then perform the mathematics to aggregate the standard 
errors for the specified grouping (e.g. provider, MDC, DRG, or CTC11).  The calculations 

used are: (a) calculate an average variance )ˆ( jlyV , and b) calculate each deviation score, djl.  
7. In calculating deviation scores on reports, the program’s front-end scripts use the non-

rounded raw and risk values to calculate the deviation (raw-risk).  The front-end report then 
rounds the raw, risk, and deviation scores to the first decimal place.  The reports have a 
footnote stating “Raw minus risk may differ from deviation due to rounding.” 

8. The deviation (computed from the non-rounded raw and risk values), raw standard error, and 
number of observations (n) generate a t statistic that is compared to a critical value to 
determine significance. 

9. The t statistic is calculated for each deviation score, at any aggregate level, using the 

following equation:  ∑
⋅

=
2)(sep

deviationnt

.  
10. In determining n for the t statistic calculation, only valid raw values are used. (i.e. for ln 

values ≠ 9912). 
11. The ccms_common.t_distributon table is populated with critical values for a two-tail t test. 
12. To determine significance, locate the critical t value (field name: t_value) from the 

ccms_common.t_distribution table having the appropriate degrees of freedom (df = n-1) and 
significance level (sig_level = 0.75 or 0.90).  If there is not an exact match for the number of 
degrees of freedom, choose the closest number that is smaller than the observed number. 

13. If the calculated t statistic exceeds the t_value for a sig_level of 0.90 (α = 0.10), the deviation 
score receives two asterisks.  If the calculated t statistic exceeds the t_value for a sig_level of 

                                                 
11 MDC = Major Diagnosis Category  
DRG = Diagnosis Related Group 
CTC = Common Treatment Category  
12 Refer to N:\Analytix\develop\methodologies\Lntrans\logreq2.doc for information on column requirements. 
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0.75 (α = 0.25) but is less than that for a sig_level of 0.90, the deviation receives one 
asterisk. 

14. The program’s front end imposes a constraint preventing any score with a rounded deviation 
of 0.0 from receiving a significance flag.  (i.e. even if before rounding the deviation ≠ 0 and 
the score has received a significance flag, the flag will be removed.) 
 
 

VI. Select Practice 
Select Practice is a collective name for a series of CareScience methodology, product and 
reports. It was first developed in 2002 and 2003 as an additional feature of Quality Manager. 
Under Select Practice toggle, a hospital can benchmark its performance, relative to a group of 
selected hospitals efficiently delivering high quality of care. The methodology of identifying the 
selected hospitals soon gets widely accepted, and evolves into multiple applications. All of them 
are under the collective name of Select Practice. This documentation will mainly focus on the 
methodology. The mathematical details are illustrated in the Appendix C (Select Practice 
Formulas). 
 

6.1 Setting 
Outcome comparisons have long been viewed as a powerful way to motivate improvement in 
inpatient quality of care.  These comparisons, often called practice profiles, outcomes reports, 
report cards, or scorecards, have captured the attention of not only health care providers but also 
payers and consumers.  Although no single universally accepted quality of care measure exists, 
certain key elements are common.   
 
Mortality is the most widely accepted measure of quality of care, but mortality alone can not 
fully cover all dimensions of quality.  The CareScience model of quality is measured by the 
incidence of three adverse outcomes: mortality, morbidity, and complications, which are 
combined into a single quality measure using the preference weightings from the Corporate 
Hospital Rating Project.13  
 
CareScience defines a highly rated hospital as one that delivers excellent health care in an 
efficient way.  In the CareScience rating model, efficiency is captured by length-of-stay (LOS).  
Length-of-stay serves as a proxy for resource usage, reflecting how efficiently hospitals allocate 
resources. 
 
For each disease grouping, hospitals are ranked for quality and efficiency separately, with the 
highest rankings going to hospitals with the lowest risk-adjusted LOS and adverse outcome rates.   
To qualify as “Select Practice” for a given disease, a facility must be in the top two quintiles (top 
40%) for both efficiency and quality measures.  Because the rating system is two-dimensional 

                                                 
13 Pauly MV, Brailer DJ, and Kroch EA, “The Corporate Hospital Rating Project: Measuring Hospital Outcomes 
from a Buyers Perspective,” American Journal of Medical Quality, 11(3):112-122.  
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and takes into account both quality and efficiency, the system makes no trade-off between these 
two considerations.   The five by five efficiency-quality matrix is illustrated in Figure 1.  For the 
majority of diseases, quality and efficiency rankings are weakly correlated, and the Select 
Practice facilities (“High”) constitute 16% (40% of 40%) of all facilities that qualify for ranking.  
Other ranking combinations include the following: 1) placing in the bottom two quintiles of both 
efficiency and quality (four poor performance “Low” cells), 2) placing in the middle three 
groupings (five average performance “Middle” cells), 3) placing in the six low quality-high 
efficiency cells (“Cheap”), and 4) placing in the six high quality-low efficiency cells (“Dear”).   
 
This hospital rating system is disease specific for about 60 conditions (depending on the data 
type) that cover virtually all cases; hence, it is not explicitly a hospital level ranking.  The 
working hypothesis is that a high performance hospital in a given disease has better chance to be 
high performance in other related diseases in the same service line.   Nevertheless, extension of 
this disease-specific profiling system to rate hospitals as a whole can only be accomplished by 
assessing the distribution of the disease counts in Figure 1 for each hospital.  A high performance 
hospital would therefore be one with a large number of “Select Practice” diseases (upper two 
quintiles for both quality and efficiency).  Conversely, a poor performance hospital would have a 
large number of “Poor Performance” diseases.  The other three categories are harder to apply to 
the hospital as a whole, since it is possible to be “average” in a number of ways, not just by 
having a preponderance of disease areas in the center of the grid, but by having a great dispersion 
in performance across diseases.  To make a practical judgment, it may be necessary to invoke an 
explicit trade off between efficiency and quality and between consistency and dispersion.  
 
Figure 1.  Identification of Five Performance Categories Based on CareScience Select Practice™ – 
Preliminary Recommendation for CMS Study 
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 High Efficiency & Low Quality    Select Practice (High)  
 
 Average Performance (Middle)   High   Quality & Low Efficiency 
 
 Poor Performance (Low) 
 

 

6.2  Methodological Details 
6.2.1 Data Source 

The Select Practice methodology was applied to two hospital data bases: (1) state hospital 
association all-payor patient records and (2) MedPAR patient records from the Center for 
Medicare and Medicaid Services.  This first database does not cover all 50 states for two reasons.  
First, some states do not provide the data, and second, some states charge prohibitively high 
prices for their data. Usually, the State data obtained contains 15 to 20 million inpatient records 
from over 2,000 to 2,600 facilities in 14 to 20 states.  Fortunately, many states with large 
population are represented, including AZ, CA, FL, MA, MD, NJ, NY, PA and TX. MedPAR 
data contains over 12.5 million Medicare inpatient records from almost 6,200 facilities 
nationwide. The number of patient records in the MedPAR data has increased yearly as the aging 
population continues to grow. On the other hand, the number of facilities drops as hospital 
consolidation continues.  

6.2.2 Risk Adjustment 

The databases were first processed under the CareScience risk assessment methods described in 
the previous sections. Risk scores were generated for each of the four outcomes: mortality, 
complications, major morbidity, and length of stay.   A risk score represents the expected or 
‘standard’ outcome under typical care based on a patient’s health status and other characteristics.  
Risk scores serve as benchmarks, whereby the quality and efficiency of hospital services can be 
evaluated across facilities, regardless of case mix.  If the raw scores deviate negatively from their 
risk scores, the facility is considered a better provider than the benchmark.   
 
6.2.3 Quality Index Computation 
 
Based on an earlier developed method from the Corporate Hospital Rating Project (CHRP), risk-
adjusted adverse outcome rates for mortality, morbidity, and complications are combined into a 
single quality measure represented by the function: 
 
                    Qkh = 0.46(Tkh)0.96 + 0.29(Bkh)0.91 + 0.25(Ckh)0.94.  
 
Q, T, B, C, h, and k represent the quality index, risk-adjusted mortality, risk-adjusted major 
morbidity, risk-adjusted complications, facility, and disease, respectively.  Hospitals then are 
ranked according to their quality index with smaller values of Q indicating better quality.  
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Quality index can be normalized with the following formula: 
 
Normalized Indexkh = ( Qkp / Qkh )*100,  
 
where Qkp represents the quality index of population (P) in disease K. After normalization, 
higher score reflects higher quality. 
 
The volume of discharges per hospital varies greatly across the database.  Fewer discharges may 
not provide a statistically sound analysis and thus necessitates a minimum volume cutoff.  The 
applied criterion is that a facility must have at least 100 discharges in a given disease (defined by 
principal diagnosis) to qualify for ranking in State data.  In MedPAR data, the threshold is cut by 
half to reflect its smaller size, which only covers the 65 years old and above population.  The 
qualified facilities are divided into five categories based on their ranks.  Because all cases from a 
given facility are, by requirement, sorted into the same quintile, the categorization can not be 
precisely processed.  Each category represents approximately one fifth of the total volume and 
all facilities.  
 
6.2.3 Efficiency Index Computation 
 
Length-of-stay is used as a proxy for resource usage, based on the assumption that a hospital 
spends more resources on patients who stay longer in the hospital for a given disease.  Since 
length-of-stay is usually recorded very accurately for each patient, it is an ideal measurement for 
a patient-level model.  For each disease, facilities with cases exceeding the cutoff (100 for State 
data and 50 for MedPAR data) are ranked according to the function,  
 
RLkh = exp{(log(LOS)kh – (logLOSrisk)kh),  
 
where RL, k, and h represent ratio, disease, and facility, respectively.  Lower ratios denote 
greater efficiency. The efficiency index can also be normalized according to the same formula 
that is used for the quality index. Facilities are then divided into five categories based on the 
same criteria used for the quality index.    
 
6.2.4 Cross Tabulation of Quality and Efficiency Index 
 
Neither the quality index nor length-of-stay can alone determine the Select Practice hospitals. 
Our study shows that hospital rankings for quality and length-of-stay are largely independent for 
the majority of diseases.  In other words, a hospital has roughly the same probability of falling 
into one of the five quality index categories regardless of its risk-adjusted length-of-stay, and 
vice versa.  In a 5X5 cross tabulation of the quality and efficiency indices, hospitals are relatively 
evenly distributed in each of the 25 cells.   
 
A Select Practice hospital is expected to deliver high quality healthcare in an efficient manner. 
For each disease, Select Practice hospitals are identified by choosing facilities that fall into the 
top 2X2 cells in the 5X5 cross-tabulation matrix.  Select Practice hospitals represent roughly 
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16% (4/25) of cases and facilities for each disease.  To prevent small samples from diluting 
statistical power, 200 is set as the minimum number of facilities needed for ranking. 16% out of 
200 is 32.  We believe that this cutoff is the minimum number of Select Practice hospitals 
required to keep Select Practice statistically meaningful.   
 
No matrix is constructed if there are fewer than 200 qualifying facilities for a given disease.  
Diseases with low volumes are rolled up into one of the 18 major diagnosis groups (Broad 
Diagnosis Group), defined by the ICD9-CM classification system.  For example, ICD9 codes 
001 to 139 are rolled up into BDG 1 (infectious and parasitic diseases) with the exception of 038, 
which has sufficient volume to stand alone. All BDGs are then processed in the same manner, 
and a list of Select Practice hospitals is generated for each of the Broad Diagnosis Groups.  

 

6.3 Scaling Factors 

6.3.1 Scaling Factor Calculation 

After the Select Practice hospitals are identified, their performance is measured as the extent to 
which their performance differs from the overall level.  For mortality, morbidity and 
complications, the overall performance level for both the Select Practice hospitals and the entire 
population of hospitals is captured by their case-weighted arithmetic means.  By comparing the 
risk-adjusted outcome of the Select Practice hospitals (Select Practice case-weighted mean 
deviation + Population case-weighted mean raw rate) to the population’s overall case-weighted 
mean raw rate, a ratio is obtained for each of the three clinical outcomes for each disease.  For 
LOS, the ratio is simply the case-weighted RLkh of the Select Practice hospitals.  These ratios are 
called ‘Scaling Factors.’  They are applied to ‘scale’ down standard risk to Select Practice risk.  
Scaling factors are numbers between zero and one, and they usually fall into the range between 
0.75 and 0.95.  The smaller the ratio is, the greater the difference is between the performance of 
the Select Practice hospitals and the overall hospitals.  
 
Scaling factors are also calculated for Cost although they are not used in Select Practice ranking. 
The ratio of actual cost and cost risk is first calculated for all hospitals by disease, using the 
following function: 
 
R$kh = exp{(log(Cost)kh – (logCostrisk)kh),  
 
where R$, k and h represent ratio, disease and facility, respectively.  
 
The cost scaling factor is then calculated as the case-weighted R$kh of the Select Practice 
hospitals.  
 
6.3.2 Scaling Factor Range 
 
Mathematically, the scaling factors for mortality, morbidity and complication may be greater 
than one, because the quality index that combines them allows trade-offs among them.  
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Extremely excellent performance in one or two outcomes may compensate for bad performance 
in other outcomes.  Therefore, a Select Practice hospital may theoretically have worse 
performance than the overall population’s performance in one or two outcomes.  In reality, 
Select Practice hospitals often have balanced performance in all three clinical outcomes.  Even if 
a few Select Practice hospitals perform badly in one or two outcomes, the group volume (at least 
32 Select Practice hospitals) can reduce the outlier effect, thus, largely guaranteeing that the 
scaling factors of the clinical outcomes are within the reasonable range of 0.75 to 0.95.  

In a few disease groups, the mortality rate is very low (e.g., ICD9-Diag 303 - alcohol 
dependence).  For these disease groups, complications become the dominant factor in the quality 
index.  Because mortality is hardly relevant for these rankings, the scaling factor may actually 
exceed 1.0, and consequently, it is capped at 1.0.  At this level, Select Practice hospitals are on 
par with all other hospitals.  
 
For efficiency, LOS alone determines hospital ranking.  No hospital with worse performance 
than the population’s overall performance level can rank in the top two quintiles.  Therefore the 
LOS scaling factors are always below ‘one.’  Since cost is highly correlated with LOS, the cost 
scaling factors often trail LOS.  This, however, does not mathematically guarantee that the cost 
scaling factors are within the reasonable range, and consequently they are capped at ‘one.’   
 
6.3.3 Scaling Factor Implementation 
 
The detailed calculation of scaling factors and how to apply them are described in Appendix C 
(Select Practice Formulas). The following is a simplified example of how to apply the scaling 
factors and interpret Select Practice risk.  Mortality rate for AMI patients in a given hospital is 
7.5% while the standard mortality risk is 8.0%.  The deviation is -0.5%.  In other words, the 
hospital has saved slightly more patient lives than a typical hospital with the average 
performance level and given the case mix.  For AMI, the Mortality scaling factor is 0.89.  The 
product of the standard mortality risk and the scaling factor is 7.1%, which is called the Select 
Practice risk.  The Select Practice risk is the predicted outcome for a Select Practice hospital 
given the case mix.  Compared to the Select Practice risk, the hospital’s deviation now becomes 
0.4%, which indicates that the hospital has saved fewer patient lives than a typical hospital in the 
Select Practice group with the given case mix.  
 
Scaling factors are created and updated by Research, using SAS language.  Because State data is 
different from MedPAR data, the SAS program differs accordingly.  The Select Practice 
programs can not be automatically executed.  The name and location of the database has to be 
changed every time a new database is processed.  Some table and column names may also 
change as the Data Manager program evolves. The first half of the Select Practice program runs 
by 3-digit principal diagnosis.  After the major 3-digit diagnoses are identified and processed, the 
second half of the program begins processing the broad diagnosis groups (BDGs).  Because the 
volume of each diagnosis may vary yearly, the list of major diagnoses is subject to slight 
changes.  It is therefore necessary to manually code the rolling up of minor diagnoses.  
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Scaling factors from the latest State data are applied to the production data. Before they are 
handed to DAU, they must be saved in a table in which 3-digit principal diagnosis is the primary 
key.  Minor diagnoses that are rolled up in the same BDG share the same scaling factors.  The 
actual application of scaling factors occurs in the front end report developed by Software 
Engineering and monitored by Product Management.  

 

6.4 Other Implementation of Select Practice Method 
Since its debut in 2002, the Select Practice method has been widely accepted for hospital 
ranking.  It has been used as a powerful marketing tool by the Sales team. Based on MedPAR 
data, CareScience Select Practice Hospital List has been formally announced in 2005. The list is 
updated annually. Select Practice methodology has also been used for multiple consulting and 
research projects, bound to care providers, regulatory agencies and academia. Depending on the 
purpose of these activities, Select Practice method is continuously updated, and the SAS 
programs are continuously reshaped to accommodate new requirements.  
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Appendix A - Calculating Costs 
 
In the hospital setting medical “cost” does not have a common, single definition, in part because 
of the diverse reasons for tracking costs.  Record keeping at the patient level should ideally 
distinguish at least three different aspects of medical cost and its components.  First, the most 
straightforward patient-oriented view of cost is the value of all resources directly included in the 
provision of individual patient care.  Examples of these variable costs include nursing, technical, 
and physician labor, as well as any tests/procedures performed or supplies consumed.  These 
costs are often the basis for clinical profiling, because they are presumed to be under the control 
of treating physicians.  A second broader measure of total hospital cost includes, in addition to 
the aforementioned variable costs, all overhead and administrative costs (fixed costs).  These 
costs are not limited to patient care directly, but rather encompass the costs of running the 
hospital and financing its physical plant and equipment.  Most of these components are included 
in Medicare’s Hospital Cost Report Information System (HCRIS) and are grouped by hospital 
departments.  Third are cost reimbursements, the dollar amount paid to the provider for each 
case.  Reimbursements are not necessarily the true treatment costs, but rather the amount that the 
payor has determined to be typical for the specific case mix and care requirements, in this case 
Medicare’s RBRVS (Resource Based Relative Value Scale) computations.  These, too, are 
available from the Center for Medicare and Medicaid Services (CMS) and are grouped by DRGs. 
 
One other dimension to tracking costs and charges deserves note.  Aggregate or departmental 
dollars can be assembled for the entire facility or restricted to the inpatient population only.  
Facility level cost-to-charge ratios are often much greater than those limited to inpatients.  There 
are two reasons: (1) outpatient costs are much closer to billings; and (2) facility level 
aggregations more naturally allow the inclusion of overhead (fixed) costs. 
 
A number of published studies have assessed the measurement of the costs of providing medical 
care in hospital settings.  When comparing costs derived from departmental cost-to-charge ratios 
to costs derived from RVUs14, CCR-calculated costs were shown to be a reliable methodology 
for estimating hospital costs and for comparing average costs for a collection of patients in a 
given DRG among hospitals.15  Hospital-level CCRs, however, are not a reliable way to assess 
costs for individual patients when evaluated by the RVU “gold standard.”   Nonetheless, when 
large representative samples of patients are the basis for comparison, hospital-level CCRs can be 
useful for overall cross-hospital profiling. 
 
The accuracy of cost-to-charge ratios is influenced by a number of hospital factors, including 
nursing and physician labor, teaching status, patient risk and demographics, insurance status, and 
even location.  An alternative to using RVUs to assess the reliability of CCRs is to compare 
hospital charges to costs that are derived from internal cost accounting systems, for those 

                                                 
14 RVU, relative value units, describes a procedure’s intensity of resource usage. The details about RVU can be 
found in the section of Clinical Knowledge Base. 
15 Shwartz M, Young DW, Siegrist R.  The Ratio of Costs to Charges: How good a basis for estimating costs?  
Inquiry 32:476-481. 1995. 



 38

hospitals that have them. 
 
Some medical centers, for example, have adopted a cost accounting and management 
information system developed by Transition Systems, Inc. (TSI).  This system relies on DRGs to 
allocate costs and involves the following process: First, all billable procedures in the hospital are 
grouped into intermediate products which are then mapped into departments.  Within each 
department, each intermediate product is assigned a relative weight for up to nine cost categories 
– variable labor16, variable supplies, variable other, fixed direct labor17, fixed direct equipment, 
fixed direct facilities, fixed direct other, variable indirect, and fixed indirect. This relative weight 
is then multiplied by the annual volume of the product and then summed over all products per 
department to determine the total relative weight units expended by the department.  These costs 
are broken down into the nine cost categories.  One main problem with this system is that 
hospitals differ in how they define intermediate products and in how they map them into 
departments.18  
 
The CareScience data model explored a number of alternatives and after extensive testing found 
that the best approach was to exploit the Medicare cost and charge information from the 
minimum data set hospital cost report (HCRIS) to create cost-to-charge ratios (CCR) by 
department.  The cost and charge information is for the entire facility, organized by departments, 
and focuses on ancillary services without distinguishing variable and fixed costs.  The 
application of these ratios to client data poses challenges, because the CareScience Data Manager 
tracks charges at the patient level rather than by department.  Some studies have shown that the 
overall hospital CCR, in contrast to departmental CCRs, is not a reliable basis for comparing 
costs across hospitals.  These computed CCRs contain some extreme values, which require 
trimming.  After trimming (excluding the top and bottom 1 percentile) the average ratio is 0.62 
with a standard deviation of 0.23.  These total facility ratios are somewhat smaller than the 
average (unweighted) departmental ratios with which they correlate at about 86 percent.  
 
Our ultimate goal is to accurately account for costs and resources attributable to an individual 
patient’s care.  Meeting it would require detailed information from our clients both in terms of 
charge breakdowns by department and complete cost accounts.  This kind of information could 
help us build a model of CCR-based costs.  CCR derived costs have been shown to be reliable 
when comparing the relative cost of patients in a DRG in one hospital to the average cost of 
patients in the same DRG in a group of hospitals. 19   This could be accomplished if we obtained 
charge break downs on a departmental level.  These charges could then be multiplied by 
departmental CCRs obtained either from the hospitals own total annual departmental costs and 
charges or those calculated from the CMS minimum data sets. 
 
                                                 
16 Variable labor is direct patient care or services. 
17 Fixed labor includes strictly administrative staff and caregivers when they perform administrative duties. 
18 Shwartz M, Young DW, Siegrist R.  The Ratio of Costs to Charges: How good a basis for estimating costs?  
Inquiry 32:476-481. 1995. 
19 Shwartz M, Young DW, Siegrist R.  The Ratio of Costs to Charges: How good a basis for estimating costs?  
Inquiry 32:476-481. 1995. 
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Appendix B – Semilog Modeling 
 
Certain outcome measures, notably costs and length-of-stay (LOS), are distributed with a 
rightward (positive) skew, as depicted below in Figure 1(a).  Applying linear regression to 
models with skewed dependent variables gives rise to a number of pathologies, including 
inefficient, often biased, parameter estimates and predictions outside logical bounds, such as 
negative values for LOS and costs.  When outcome measures are not symmetrically distributed, 
analysis of performance can be disproportionately influenced by outliers and special or extreme 
cases.  This phenomenon can require a manual procedure for identifying and removing outliers, a 
subjective technique at best.  
 
A more robust solution is to take the natural log of the dependent variable, which results in an 
approximately symmetric distribution and contracts the outliers inward toward the center of the 
data, as shown in Figure 1(b). It also ensures that all predicted values will be positive. (No matter 
how negative the log value is, taking the anti-log to restore the values will guarantee that they are 
positive.) 
 
We conducted a systematic review of non-adverse outcome measures – LOS, charges, and costs 
– by three-digit ICD-9 code to monitor the positive skew and measure its magnitude. In 
symmetric distributions two measures of central tendency, geometric mean and arithmetic mean 
(se below), are equal.  As the skew increases in unimodal distributions the ratio of the arithmetic 
mean to the geometric mean grows from unity.  
 
To illustrate skew: Total cost is skewed right but the natural log of total cost – ln(cost) – is  

approximately symmetrically distributed, therefore using linear regression to 
forecast ln(cost) will result in much better estimates with smaller error. 

Figure 1 
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A numeric illustration: 
Depicted below is the total cost frequency distribution for a sample of 200 hospital discharges.  It 
displays the characteristic positive skew (skew coefficient = 2.6). 

Fig. 2(a) Total cost for 200 discharges
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Fig. 2(b) Log of Cost for 200 discharges
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Geometric vs. arithmetic means: 
The arithmetic mean is the simple average, computed by adding up all values (xi) in the sample 
and dividing by the number of such values (n):   

arithmetic mean  x  = ∑
=

n

i
ixn 1

1   

The geometric mean uses the same principle, but instead of adding the values, they are 
multiplied together and instead of dividing by n, the nth root of the product is taken: 

geometric mean  x~  = n
n

i
i∏

=1

x  

An equivalent way to compute the geometric mean is to take advantage of natural logarithms.  
Defining y as the natural log of x [y = ln(x)], the geometric mean is just the anti-log (exp) of the 
arithmetic mean of y:  

geometric mean  x~ = exp( y ), where y  = ∑
=

n

i
iyn 1

1  

Because the geometric mean is based on log values and the log transformation tends to draw 
extreme values back toward the center of the data, the geometric mean is more “robust” than the 
arithmetic mean.  “Robust” here means less influenced by outliers. 
 

Back to the cost example from 200 hospital discharges: 
Transforming cost from Fig. 2(a) by taking the natural log gives the frequency distribution in 
Fig. 2(b), which exhibits the typical symmetric bell shape of the normal distribution.  The 
arithmetic mean cost is marked on the first (skewed) frequency histogram, which in this 
illustration is $1670.  The mean of the log(cost) is marked on the second histogram at 6.95.  
Taking the anti-log of this value yields the geometric mean equal to $1043, which is much 
closer to the mode of the original (untransformed) histogram.  The pronounced positive skew in 
the original cost distribution guarantees that the arithmetic mean is much larger than the 
geometric mean, which tends to pull back the extreme values in the upper tail.  In this illustration 
the ratio of the arithmetic mean to the geometric mean is $1670/$1043 = 1.60. 
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arithmetic mean risk 
jlx$  = 1

njl
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where ijklx = patient.total_charges, patient.comparative_costs, and patient.length_of_stay 

   
ijkl ijkly x= ln( )  

and 
ijkly$ = ln(total_charges) risk, ln(comparative_cost) risk,  and ln(length of stay) risk 

   i = patient (each row in the patient table) 
   j = provider or grouping 
   k = icd9 diagnosis (3 digit) 
   l = outcome (length of stay, charges, cost) 
   n= all observations including zeros 

 
Modeling Requirements: 
1. Create an additional column in the patient/episode table to hold ln_x, ln_x_risk,  

x_risk(eln_x_risk) and ln_x_stderr where x represents the dependent variables. 
 

2. Populate this column with the ln(total_charge), ln(comparative_costs), and 
ln(ccms_length_of_stay) respectively.  The ln values will be populated with a ‘99’ when 
costs and charges are zero.20 
 

3. Regress the ln(total_charge), ln(comparative_costs), and ln(length of stay) on the original 
vector of independent variables.  Cases with a null value or a 99 for the dependent variable as 
well as incomplete cases will not be included in the regression.  Nevertheless fitted values 
(risks) and their standard errors will be generated for all complete cases21.   We shall use n to 
designate the number of complete observations including those with null or ‘99’ dependent 
values; m indicates the number of observations included in the regression (excluding 
incomplete and those with null or ‘99’ dependent values).  To illustrate, suppose a given 
model stratum has 100 observations of which 95 are complete; and of these 95, ten have cost 
equal to zero (are given a value of ‘99’ in the log column).  Then n=95 and m=85.  The 
regression is run on m=85 cases and fitted values (risks) together with their standard errors 
are generated for n=95 cases. 
 

4. The back-end values are left in log form and antilogs are applied only after aggregation on 
the front end.  
 

                                                 
20 99 is a placeholder used by Data Manager to identify observations that should be excluded from the regression 
because the dependent variable is undefined (ln of 0 is undefined). 
21 Complete cases are defined as having values for all independent variables required for the regression. 



 43

5. The front-end software application then performs the appropriate calculation (sum, average, 
etc.) on the log values to display the raw, standardized, and deviation results in the reports.  
(The calculations that are relevant to this conversion are on the previous page.) 

 
6. Deviations are based on geometric means: 

Geometric Deviation = exp( y jl
) – exp( y jl

ˆ ). 

7. The front-end software calculates the p-value to determine significance with all measures in 
logs (i.e. without converting raw, risk, or standard errors to the original units.)  The 
calculation will not change from what is currently in use but will be based on the m nonzero 
cases.  
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8. The deviations column on all CareScience Quality Manager reports must equal the raw 

minus the standardized values up to rounding error in the first decimal place, such that the 
deviation is no more than 0.1 different from the difference between raw and the standardized 
value. 

    
Implementation Comments: 
Implementation is a combination of front-end and back-end changes. The database must hold 
logarithmic values – ln(total_charges), ln(comparative_costs), and ln(length of stay) – and 
standard errors in log form.  All computations of confidence intervals and significance are in 
logs, including necessary aggregations.  All computations on risk values are done before 
conversion back to “levels” (in log units), hence excluding cases with zero values in the raw 
data.  This approach to aggregation generates geometric (not arithmetic) means.  Moreover, the 
log transformation method guarantees that expected level values (after taking the antilog) be 
positive, which eliminates the need for front-end data trimming. 

 
Comparative Costs as an example: 
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1. Assignments: 
    a = exp(avg(ln_comparative_costs)) 
    b = exp(avg(ln_comp_cost_risk)) 
    c = sum(decode(ln_comparative_costs,null,0,1)) 
    d = sqrt[ sum(ln_comp_cost_risk_stderr ^ 2) ] 
    k = avg(ln_comparative_costs) - avg(ln_comp_cost_risk) 
 
2. Computations: 
    Charge deviation = a - b 
    Charge sig flags:       t-value= k * c / d   (with degrees of freedom: c - 1) 
 

 Addendum on LOS 

Within CareScience database, patients discharged the same day as admitted are assigned length-
of-stay = 1, not 0. That conforms to most billing practices. LOS is defined as the number of days 
present, not including the day of discharge with a minimum LOS = 1. This algorithm eliminates 
the possibility of undefined value of ln(length_of_stay) when LOS = 0.   
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Appendix C - Select Practice Formulas  
 

1. Determine case-weighted arithmetic means by disease (3-digit ICD-9 code, k) for 

• mortality (Tk) 

• morbidity (Bk) 

• complications (Ck) 

Note: Records without a risk score are excluded.  
 

2. Compute risk-adjusted rate for each facility (h) for each adverse outcome: 

• Tkh = Tk + ∆Tkh , where ∆ indicates mean deviation (actual - risk) 

• Bkh = Bk + ∆Bkh  

• Ckh = Ck + ∆Ckh 

      Note: Tkh, Bkh, and Ckh can never be negative.  
 

3.   Compute quality indicator by disease k for each facility (h) based on CHRP weights: 

Qkh = 0. 46(Tkh)0.96 + 0. 29(Bkh)0.91 + 0. 25(Ckh)0.94  

       Note: Smaller Qkh denotes higher quality.  
 

4. Compute efficiency ratio for length of stay by disease k for each hospital h: 

• RLkh = exp{(logLOS)kh - (logLOSrisk)kh} for h×k level means 

      Note: Smaller RLkh denotes higher efficiency.  
 

5. Cross tabulate Qkh and RLkh by quintile across facilities for each disease k.  

Note: This is a 5 x 5 cross-tabulation matrix.  
Small facilities with less than 100 cases for disease K were excluded from the tabulation.  
No matrix is constructed with fewer than 200 qualifying facilities.  
 

6. Identify the select practice facilities for each disease k (set H*
k) by choosing facilities falling 

into the top 2x2 cells in the 5x5 cross-tabulation matrix.  

Note: Select practice represents roughly 16% (4/25) of cases for each disease k.   The reason 
for the imprecision is that select practice is a facility characteristic, requiring all cases 
from a given facility be sorted into one quintile only.  
For the 50 highest-volume diseases, the correlations between quality (Qkh) and efficiency 
(RLkh) are weak.  
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7. Compute select practice risk for each disease k as 

• T*
k = case-weighted mean Tkh for all h ∈ H*

k  

• B*
k = case-weighted mean Bkh for all h ∈ H*

k 

• C*
k = case-weighted mean Ckh for all h ∈ H*

k 

• RL*
k = case-weighted geometric mean RLkh for all h ∈ H*

k 

• R$*
k = case-weighted geometric mean R$kh for all h ∈ H*

k 

 Note: Compute ratio for total costs by disease k for each hospital h: 

           R$kh = exp{(logCost)kh - (logCostRisk)kh} for h×k level means 
 

8.  Compute the scaling factor for each outcome as the ratio of select practice to mean: 

• Rtk  = T*
k /Tk for all k  

• Rbk  = B*
k / Bk for all k 

• Rck  = C*
k / Ck for all k 

• Rlk  = RL*
k for all k, where l indicates LOS 

• R$K  = R$*
k for all k, where $ indicates Total Costs 

 

9. ICD-9 codes that fail to pass Step 5 are rolled up into one of 18 major diagnosis groupings 
(Dx_Groups) of the ICD-9-CM classification system.  For example, ICD-9 codes 460 to 519 
(excluding the six codes that could stand alone) are rolled up into Dx_Group 8, which 
represents the diseases of the respiratory system.  The scaling factor for each Dx_Group is 
computed as outlined by Steps 5 to 8.  ICD-9 codes rolled up into a broader Dx_Group share 
the same scaling factor.  

 

C.1 Applying the Scaling Factors 
 The purpose of the scaling factors is to generate risk scores based on Select Practice hosptials.  
Deviation (Actual – Risk) and significance flag can then be computed on the new risk scores.  
The deviation and significance flags indicate the facility’s performance level compared to the 
nation’s Select Practice facilities for the particular disease group.  

 
1.  Compute risk score and stderr of Select Practice at patient level: 
 
    Ln_los_risk_select = Ln_Rlk + Ln_length_of_stay_risk  
    Ln_los_risk_stderr_select = Ln_Rlk + Ln_length_of_stay_risk_stderr  
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    Ln_cost_risk_select = Ln_R$k + Ln_cost_risk  
    Ln_cost_risk_stderr_select = Ln_R$k + Ln_cost_risk_stderr  
 
   comp_risk_select = comp_risk * Rck 
   comp_risk_stderr_select = comp_risk_stderr * Rck 
 
   mort_risk_select = mort_risk * Rtk 
   mort_risk_stderr_ select = mort_risk_stderr * Rtk 
 
   comp_morb_risk_select = comp_morb_risk * Rbk 
   comp_morb_risk_stderr_select = comp_morb_risk_stderr * Rbk 
 
 (R: Scaling Ratio; k: 3-digit ICD-9 code; L: LOS; $: cost; c: complication; t: mortality; b: 
morbidity) 
   
2.  Report the Select Practice deviation and significance flag at the aggregate level: 
 
    Use the same method as the standard-practice report.   
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Appendix D - Technical Details about Model Specification 
 
 
Model Stratification 
The stratification is roughly based on 3-digit level ICD-9-CM diagnosis codes. A clinical and 
statistical review was conducted, basing on State All-Payer 1999 data. The stratification 
processing is described below: 

1.  A major diagnosis code, representing more than 0.1% of total discharges, stands as a 
separate stratum. For example, ICD9 410 (AMI) stands as a separate stratum because its 
volume (2% of total discharges) is greater than 0.1%, the minimum requirement. 

2.  Within the minor diagnosis codes that fail the volume criterion, a clinically significant 
diagnosis code stands as a separate stratum. The clinical significance is determined at 
threshold of 5% mortality rate. For example, ICD9 151 (Malig. Stomach Neoplasm) 
stands as a separate stratum because its mortality rate (11%) is above the threshold of 5%, 
even though its volume is lower than 0.1%. 

3. Similar diagnosis codes are rolled up into a common stratum. For example, ICD9-204, 
205, 206, 207 and 208 are rolled up into Leukemia.  

4. The remaining diagnosis codes are rolled up into Broad Diagnosis Groups according to 
the designation of ICD-9-CM. For example, ICD9_740 - 759 are rolled up into BDG14: 
Congenital Anomalies.  

5. Exemption One:  Newborns are determined by three principal diagnosis codes at two-
digit level: 76, 77 and V3. If any of a newborn’s diagnosis codes begins with 764, 765 or 
V213, this case is classified into low birth-weight immature newborn. If none, this case is 
classified into normal newborn.  

6. Exemption Two: Major organ transplant patients are stratified separately due to issues 
specific to this patient group (e.g. heart transplant). They are identified by DRG.  

 
 

Mortality Exemptions 
 

Hospital level mortality rate is usually around 2 or 3 percent. Expirations do not evenly occur 
across the 142 model strata. Among some disease strata, mortality rate is very close to zero. For 
instance, mortality rate is less than one-tenth of a percent among intervertebral disc disorder 
patients (ICD9-diag 722). It is extremely difficult to build a robust model to accurately pinpoint 
the very rare expirations. As a result, these disease groups are proposed to be omitted from 
mortality analysis rather than forced into a poor model.  
 
The CareScience mortality model is based on linear regression, and consequently the predicted 
mortality risks may fall out of the range between zero and one at the patient level. Out-of-range 
risks are acceptable unless they exceed the “reasonable range” of -0.5 <= and <= 1.5 at which 
point they are considered invalid.  If negative risks occur in aggregate reporting, they are 
rounded to zero. 
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Complications Algorithm 
 

Complications are derived from principal and secondary diagnosis codes.  Ideally, complications 
should be recorded as binary outcomes. However, there is no absolute way to classify diagnoses 
as complications.  Clinically, a diagnosis may be considered a complication in one case but a 
comorbidity in another. The POA flag (present on admit) is helpful to identify existing 
conditions prior to admission. But the flag is often unavailable in either public or private data. 
Moreover, a diagnosis that was captured during an inpatient stay does not necessarily indicate its 
development after admission.  Although chart reviews are a reliable way to supplement this 
information, they are unsuitable for large-scale data processing efforts.  CareScience has 
therefore developed a unique comorbidity-adjusted complication index (CACI) to approximate 
the probability that a diagnosis is a complication given its accompanying principal diagnosis. 
These complication probabilities were determined ex ante by a panel of medical experts (please 
see section of Clinical Knowledge Base for details).  
 
The following algorithm is in use when complication is calculated: 

1. Find the pair of principal and secondary diagnosis in CACI table and select the 
corresponding probability; 

2. If the principal and secondary diagnosis code combination can not be found in the CACI 
table, the program selects the secondary diagnosis code’s default probability 
(independent of principal diagnosis) from the CACI2 table; 

3. If the secondary diagnosis code can not be found in either the CACI table or the CACI2 
table, the diagnosis is excluded from the calculation; 

4. If the patient has no secondary diagnosis codes, his complication probability rate is set to 
zero; 

5. If the first three digits of the secondary diagnosis code are equal to the first three digits of 
the principal diagnosis code, the secondary diagnosis is excluded from the calculation;  

6. For Obstetrics patients, the program selects probabilities for ALL diagnoses from the 
CACI2 table;  

7. Newborns, as defined by the principal diagnosis code, are not included in complication 
analyses. 
 

CACR Comorbidity Scores and Chronic Diseases or Disease History 
CACR comorbidity scores are derived from principal and secondary diagnosis codes.  Secondary 
diagnoses are first categorized according to a five point Likert scale of increasing severity (A-E) 
where E is most severe.  If a secondary diagnosis is not present in the Diagnosis_Morbidity table, 
it receives a designation of “unspecified” and is correspondingly grouped to category U.  
Secondary diagnoses are subsequently evaluated according to the CACI algorithm.   
Comorbidities are calculated as  

                    nj
s

n
,...,2,1  ,Pij) -(1

1
=∑

→

  

where n is the number of secondary diagnoses, s is the severity category, and pij is the probability 
of complication for the jth secondary diagnosis given principal diagnosis i.  The probability that 
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a particular secondary diagnosis is a complication of a given principal diagnosis is retrieved from 
the CACI table.  Probabilities of comorbidities in the same severity category are summed 
together. As a result, comorbidity score may not be an integer.  
 
Comorbidity score is closely related with complications. Comorbidity scores are calculated by 
the similar algorithm that is used to calculate complications.  

Chronic diseases and disease history are determined from patients’ secondary diagnosis codes. 
(Note: Chronic diseases were previously included in patients’ comorbidity scores.)  To 
differentiate patient characteristics, common chronic diseases enter the model separately from 
comorbidities.  Comorbidities and chronic diseases are restrained to positive coefficients in the 
model calibration. 
 

Birth Weight and Defining Diagnosis 

Neonates represent approximately 10% of all admissions and are therefore an important analysis 
population. The overwhelming majority of neonates are healthy full-term babies.  Attention is 
focused on high-risk neonates, who are primarily immature, low-weight newborns. Our study 
shows that birth weight is the most important predictor of survival, treatment pattern, and 
resource requirements.  Weight class is encoded in the fifth digit of immature neonate diagnosis 
codes (764, 765, and V213).  If the fifth digit denotes unspecified weight, the birth weight is set 
to null, and the record is excluded from outcome analyses. If the fifth digit denotes a birth weight 
range, the birth weight is set to the midpoint of the range.  For example, a fifth-digit value of ‘4’ 
indicates a weight between 1 and 1.25 kg, and so the birth weight is set to 1.125kg.  It should be 
noted that the fifth digit of V213 indicates a different weight range from that of 764 and 765.   
 
Since 2003 gestational age became a new field in newborn data, however, it has remained 
inconsistently reported.  Due to lack of data, the relationship between gestational age and birth 
weight has yet to be quantified.  In CareScience risk model, if a record only contains a 
gestational age code, birth weight is not be assigned, and the record is excluded from analysis.  If 
a newborn does not possess a code that indicates immature status, the newborn is assigned to the 
normal neonatal group for which birth weight is not a risk factor.   
 
The neonatal model does not include procedures and CACR comorbidity scores.  These factors 
are considered less relevant newborn characteristics.  On the other hand, certain diagnoses are 
deemed significant attributes defining a newborn’s health status.  These codes are directly 
incorporated into the neonatal model at the three digit level and are called defining diagnoses. 

 

Valid Procedures 

Strictly speaking, a procedure is not a patient characteristic but rather a provider care choice.  For 
example, two physicians may opt to pursue two different yet equally effective courses of 
treatment for the same patient.  Although procedures represent the discretion of the care 
provider, they can signal important information about the patient’s overall health status.  Certain 
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procedures can serve as effective proxies for lab reports and treatment history that are not 
available in the current database, as well as for other unobservable critical factors. To be 
included in the model, procedures must be designated as “valid” for the patient’s particular 
disease stratum.  Additionally, the timing of certain procedures relative to the patient’s hospital 
admission must be considered.  Valid procedures are grouped into one of two categories based 
on timing criteria. 

 
Each disease stratum (ccms_crl_group_by) has a unique set of valid procedures.  If a procedure 
falls into Category 1, timing of the procedure is not considered, and the analytic program simply 
searches the beta tables to find the procedure’s corresponding coefficient.  If the coefficient is 
not present in the beta tables, its value is set to zero. Category 1 procedures with coefficients of 
zero have no impact on the risk score. (It should be noted that although a procedure may be 
considered clinically relevant, it may not be statistically significant for a particular outcome.  
Procedures failing to be statistically significant are not included in the model and have no impact 
on the risk score.)  

 
If a procedure is mapped to Category 2, inclusion of the procedure in the model depends on the 
procedure’s timing during the inpatient stay.  More specifically, the Valid Procedure table 
contains a field called ‘Timing’ that specifies the maximum period of time from admission 
during which a procedure must occur to be included in the model.  For example, a Timing field 
value of “48” indicates that a procedure may enter the model if it occurs within the first 48 hours 
of the hospital stay.  For patient records, timing of individual procedures can be calculated as the 
difference between the Admission_Date and the Diagnosis_or_Procedure_date.  If the difference 
is within the timing requirement in the Valid Procedure table, the procedure will be counted, and 
the algorithm, as described for Category 1, will be applied.  If the timing field is missing, the 
procedure will be excluded. 
 
For several disease strata (ccms_crl_group_by), the risk model does not incorporate valid 
procedures. These groups include Normal_Neonates, Immature_Neonates, DRG 103, DRG 480, 
DRG 481, DRG 495, DRG 512, and DRG 513.  
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Appendix E – Technical Details about SAS Programming 
 
 
Data Transforming 
 
1. Transforming Date-Time Format 
 
SAS/Access software allows SAS to pull out data directly from Oracle database.  Most formats, 
except date-time, are kept the same in SAS data set.  Oracle date-time formatting is recognized in 
the SAS environment, however, SAS automatically transforms Oracle formatting into a unique 
SAS date-time format when Oracle data are read into SAS.  This feature affects numerous 
timing-related fields, including Treatment_or_Admit_Date, Inpatient_Disch_Date, and 
Diagnosis_or Procedure_Date, as well as numeric fields derived from timing-related fields.  
Time_Trend, a field derived from Inpatient_Disch_Date, falls into the latter category.  Because 
SAS date-time format is used in the subsequent SAS data processing environment, care is taken 
to ensure the accuracy of variables whose format has been transformed.  
 
2. Transforming Categorical Variables 
 
For some categorical variables, the transformation is simple and straight forward (e.g. sex can 
easily be converted to a dummy variable with value ‘0’ for all male patients and ‘1’ for all 
female patients.) Some categorical variables, e.g. admission source, may consist of multiple 
categories. But each visit has only one corresponding category. They can be directly 
incorporated into model statement with ‘class’ option. They can also be transformed into dummy 
variables with ‘if, then’ clauses.  For the purpose of manipulating parameter estimates and 
covariance matrix, the latter method is preferred.  
 
Some categorical variables, on the other hand, may consist of various values for each visit. For 
example, one visit may have three chronic conditions while the other has none.   For this kind of 
categorical variables, ‘class’ option is invalid, and ‘if, then’ clause is not technically feasible.  
SAS/Macro offers a solution to this issue. The details are elaborated in the section of Macro 
Function.  
 
3. Adding New Variables  
 
When the risk model is recalibrated, new variables are often introduced.  The following three 
methods are commonly used to obtain new variables. First, some variables may not be included 
in the previous model calibration; but they do exist in the database For example, Race has long 
been available in client data; but it has been incorporated into model only after 2005.  Second, 
new variables may not exist in the current data but can be derived from existing fields.  Birth 
weight, which can be derived from existing diagnosis codes, is one such example.  Third, new 
variables may not be present or able to be derived in the current data but can be requested.  In 
these instances, Research proposes changes to the Master Data Specification requirements that 
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define what fields are collected from clients.  After sufficient accumulation of the data, the new 
variable can be implemented into the model calibration.  
 
4. Modifying Existing Variables 
 
The introduction of new variables may require modification of existing variables.  For example, 
the separate inclusion of chronic conditions as independent variables in the model necessitates 
the adjustment of the CACR Comorbidity Score.    
 
 
Alternative Model Selection Options 

1. Forward Selection 

Forward selection begins with no variables in the model.  For each of the independent variables, 
the forward selection process calculates F statistics that reflect each variable’s contribution to the 
model if included.  The p-values for the F statistics are then compared to a user-specified critical 
value for entering the model.  If no F statistics have a significance level greater than the critical 
value, the forward selection process stops.  Otherwise, the process continues by adding the 
variable with the largest F statistic to the model.  The iterative process continues until no 
remaining variable produces a significant F statistic. Once a variable is added to the model in the 
forward selection process, it remains in the model. 
 

2. Backward Selection 

Backward selection begins by calculating statistics for a saturated model that includes all 
independent variables.  The variables are then deleted from the model one at a time until the only 
variables remaining in the model produce F statistics greater than the critical value specified for 
staying in the model.  At each step, the variable showing the smallest contribution to the model is 
deleted.  Given the number of potential variables in our models, backward selection is less 
efficient than forward selection, since only a handful of variables typically meet the significance 
requirement. 

 
Macro Function 
 
SAS/Macro language employs two main devices:  Macro variables and Macro processing.  
Macro variables enable SAS users to dynamically modify text in a SAS program through 
symbolic substitution.  When the substitution expands to compiled SAS programs, the term 
‘Macro’ is applied. When a Macro is called, the compiled programs are executed automatically. 
This feature called Macro processing.  The benefits of Macro language are obvious: reducing the 
number of SAS statements in a program, decreasing manual mistakes, and saving time for SAS 
user. But Macros do NOT reduce data processing time.  The following example illustrates how 
the Macro language works.   
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Patients may be treated with multiple procedures.  Depending on the patient’s disease stratum, 
some procedures may qualify as valid procedure candidates and require dummy variables 
assigned to them.  The conventional SAS command for assigning dummy variables is ‘If … 
then…; else…;’  Because the valid procedure list is disease-specific and contains thousands of 
rows, the SAS command for assigning dummy variables must be repeated tens of thousands of 
times, since a record may be mapped to dozens of procedure codes.  The scope of this task makes 
it impossible to accomplish manually, however, the use of Macro programming statements 
renders it feasible.  
 
More specifically, a series of Macro variables, corresponding to the 142 disease groups, are frist 
created using the SAS command ‘select … into … from …’ Next, a Macro is created to repeat the 
data processing for the142 disease strata.  In the Macro, the same SAS command 
‘select…into…from’ is used to create a series of Macro variables corresponding to the Valid 
Procedures of a disease stratum; for each of the valid procedure Macro variables, a SAS program 
is executed that scans all procedure codes, picking up the patients that were treated by the 
procedure. The processing is automatically repeated until all valid procedure Macro variables 
have undergone the process.  After all records have been assigned valid procedure dummy 
variables in a disease stratum, the Macro proceeds to the next disease stratum, and the valid 
procedure Macro variables are automatically re-written to reflect the different Valid Procedure 
candidates of the second disease group.  The processing continues until all 142 disease strata 
undergo the Macro.  
 
The Macro function simplifies SAS statements in data processing immensely.  But the Macro 
logic is far more complicated than plain SAS statements, especially when Macro variables or 
multiple Macros are assembled into one global Macro. To that end, it is always recommended to 
test Macros independently before implementing them full-scale into a model calibration. 
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Appendix F - New Methods on Horizon 
 

Logit Modeling of Mortality 
1. The concept of Logit Model 

Mortality is a binary outcome; a patient either lives or expires upon discharge.  Mortality risk is a 
predicted probability within a (0, 1) interval.  A problem with the linear probability model is that 
valid probabilities are bounded by 0 and 1, but linear functions are inherently unbounded. A logit 
model can resolve this discrepancy. 
 
Transforming the probability to an odds ratio removes the upper bound.  The lower bound is then 
removed by taking the logarithm of the odds.   Setting the result equal to a linear function with 
the explanatory variables yields a logit model.  For k explanatory variables and i=1,…, n 
individuals, this model is expressed as  
 
Log [Pi / (1- Pi)] =α + β1xi1 + β2xi2+ …+ βkxik 

 
where Pi is the probability that Yi=1. The expression on the left-hand side is usually referred to 
as the logit or log-odds.  Similar to an ordinary linear regression, the x’s may either be 
continuous or dummy variables. The logit equation can be solved for pi to obtain 

 
Pi = EXP (α + β1xi1 + β2xi2+ …+ βkxik) / (1+ EXP (α + β1xi1 + β2xi2+ …+ βkxik)) 

 
We can further simplify this equation by dividing both the numerator and denominator by the 
numerator itself: 

 
Pi = 1/ (1 + EXP (-α - β1xi1 - β2xi2- …- βkxik)) 

 
The resulting equation has the desireable property that regardless what values are substituted for 
the β’s and x’s, Pi will always be a number between 0 and 1.  
 
2. The Algorithm of Calculating Risk  
 
Logit model implementation requires the following equations to calculate risk at the patient-
level: 

 
[1] Logit of Mortality Risk = β0+β1*Xi1+β2*Xi2+ … +βn*Xin 
 
The Standard Error of Logit is defined as: 
  
[2] Logit Mortality Risk Standard Error = Sqrt( Xi [COVb] Xi’),  
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where COVb is the nonlinear ML estimated variance-covariance matrix of the estimated β 
coefficients. 
 

Note that the Log of the Mortality Risk is NOT the same as the Logit of the Mortality Risk, since 
the logit value (Logit p) is equivalent to the log of the ratio that represents the risk (log (p/1-p)). 
Therefore, the logit ratio can not be equal to a log ratio.  The same logic applies to the Standard 
Error value. 

 

3. The Algorithm at Front-End Report 
When reporting Mortality Risk, CareScience analytics first determine the arithmetic average 
Logit Mortality Risk and then transforms it into the real Mortality Risk using the following 
equation: 

 
[3] Aggregate Mortality Risk = [1/(1+exp( (-1)* Avg(Logit Mortality Risk)))]*100 
 

Mortality Risk will always be a number between zero and one.  The Raw Mortality Rate and 
deviation are computed as: 

 
[4] Raw Mortality Rate = (Number of Expired Cases/Number Of Eligible Cases)*100 

 
[5] Deviation = Raw Mortality Rate – Mortality Risk 
 

4. Computing the Significance Flag of the Mortality Deviation 
“Significance flags” indicate whether the deviation could plausibly be interpreted as the 
probability that the results could have occurred randomly if there were no a true underlying 
effect.  In other words, significance flags represent the probability or confidence interval at 
which the value generated from a variable in the raw data (sample) reflects the value generated 
from the same variable in the calibration data (entire population).  
 
Rounding of deviation values is performed to the first decimal place.  For example, a value of 
0.04% is rounded to 0.0%.  Similar to other outcomes, if the Mortality Deviation equals 0.0% 
after rounding, the significance level is not computed.  Accordingly, the calculations below are 
not performed.   

 
In order to determine the significance level of the Mortality Deviation, the following algorithm is 
applied: 

 
a. First, transform the Raw Mortality value into the Logit Raw Mortality value by 

applying the following steps and equation22: 
 

                                                 
22 Note: ABS =Absolute and AVG = Average 
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[6] Logit Raw Mortality = ln(Raw Mortality/(1 – Raw Mortality)) 
 
b. Compute the Logit Mortality Deviation as: 
 

[7] Logit Mortality Deviation = Logit Raw Mortality – Logit Mortality Risk 
 
c. Calculate the T_VALUE (Z_VALUE) as: 
 

[8] T_VALUE = ABS{(Logit Mortality Deviation)/ [AVG(Logit Mortality Risk 
Standard Error)]} 
 
d. Compare the T_VALUE to the T_DISTRIBUTION table and obtain the significance 

level.   
 

Note:  If the Raw Mortality Rate is either 0 or 1 OR the Average Logit Mortality Risk Standard 
Error is 0, the Logit Raw Mortality value is considered undefined.  The significance level is set at 
the highest significance level (i.e. 90%). 

 

5. Concerns about Implementing Logit Model 
 
In-hospital death is rare among many patient populations. At hospital level, the survival-death 
split is around 98- 2. The split can be more extreme among many patient populations. For a 
given sample size, the standard errors of the coefficients depend heavily on the split on the 
dependent variable. As a general rule, we are better off with a 50-50 split than with a 95-5 split. 
Logit model has a unique sampling property. We can do disproportionate stratified random 
sampling on the dependent variable without biasing the coefficient estimates. The intercept does 
change under such sampling schemes. This solution is extremely useful in our situation. But the 
data set has to be specifically tailored to each disease stratum.  
  
Convergence failure is a common issue with logit model. We know that most of the independent 
variables are categorical variables. They enter the model equation as series of dummy variables. 
Some of the dummy variables may have the following property: at one level of the dummy 
variable either every case has a 1 on the dependent variables or every case has a 0. That causes 
complete separation or quasi-complete separation. In either case, logit model will not converge. 
Removing problematic dummy variables can achieve convergence. It is equally effective to 
collapse uncommon categories. But again, the data set has to be specifically tailored to each 
disease stratum.  
 
Logit model does not generate standard errors for the model.  Only the covariance matrix of 
parameter estimates could be used to calculate standard error for individual patients during out-
of-sample prediction. Therefore, the significance level on the front-end report is less robust, 
comparing to that of linear model.  
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At the aggregate level, logit model generates similar results to linear model. At the patient level, 
however, logit model offers better face validity.  Implementing the logit model is a costly 
endeavor requiring the overhaul of current methods and programs.  From a methodological 
perspective, the logit model offers greater advantages in the long term.  

 

Prospective Risk 

A specialized version of the model deals with "prospective" patient risk for adverse outcomes 
and resource demands.  This model restricts explanatory patient risk factors to those known and 
recorded upon admission to the hospital.  While most CareScience patient-level variables qualify 
for inclusion, the model excludes discharge disposition factors and most procedure information.  
The comorbidity score for this version of the model is based purely on known chronic conditions 
rather than on all secondary diagnoses from the discharge abstract.  The model compensates for 
information unavailable on the day of admission by including information from prior hospital 
admission by linking visit records to unique patient identifiers. 
 
Still to be developed is a version of the CareScience prospective risk model that makes use of 
test results and signals clinical findings within the first 24 hours of admission.  An increasing 
number of CareScience clients are supplying such clinically rich data elements, but we are not 
yet able to construct a database that is large enough to build a statistically robust model.  
 
Discharge Disposition Model (To be added) 
 
 
Modeling Complication as a Binary Outcome (To be added) 
 


