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Purpose/Objectives  of  Study

In recent years, we have seen a progressive movement of invasive procedural care from an 
inpatient to  an ambulatory care model. There is  already tremendous momentum behind this 
phenomenon, due, in part, to the potential to improve efficiency and reduce the cost  of care as 
well as the innovative appeal of new technology that enables procedures to be performed in a 
‘minimally invas ive’ manner. However, the rapid  and progressive conversion of procedural care 
to an ambulatory setting can occur  without a clear understanding of the  safety implications and 
without formal evaluation of the ‘hidden’ system-based risks associated with this practice model.  
Safety concerns associated with this model of care include,  but certainly  are not limited to:  

 Heavy reliance on collaboration and  data 
exchange between primary  provider and 
proceduralist for pre-procedure planning,  
with inadequate  communication 
infrastructure 

 Difficulty reconciling variations in or  
accuracy of  office-based  and procedural  
unit-based patient data 

 Less formal  pre-procedure patient  
preparation and  post-procedure  
monitoring 

 Ad-hoc involvement by  anesthesiologists 
 Increasingly  complex procedures,  

resulting in  prolonged procedural times  
while trying to maintain an ambulatory  
care delivery model 

 Little or no overt or pre-planned backup  
for management of complications or  
events, requiring urgent conversion to 
an  open operation 

 ‘Sundown’ issues:  shutdown of these  
units at a specific time, increasing  
potential for  premature patient discharge 

 Physical locations less fully equipped   
for contingencies and often ‘remote’  
from inpatient crisis management  
teams 

 More resource and equipment  
intensive, with greater reliance on 
new  technology and ancillary services  
(e.g., fluoroscopy) 

 Higher-throughput pressures in these  
units and difficulty balancing elective  
and emergency demands on limited  
schedule resources 

 Heavy reliance on patient and family   
to manage pre-procedure preparation  
and much of the post-procedure  
recovery 

 The need to  coordinate care across  
several different services and manage   
the patient across several  transitions: 
Home   Ambulatory  Procedural Unit 
 Recovery  Unit Home  Primary 
provider office 
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As practitioners and researchers in this environment, we know that the system is complex. 
There are important interactions and interdependencies between components  (staff, 
instrumentation, protocols, procedures, information, communication, and  scheduling cycles) that  
further influence provider performance and patient  safety. Given this exposure, we are clearly 
overdue for a formal analysis  of the systems-based risks associated with  ambulatory procedural 
care. What  hampers our progress,  however, is a general lack of experience and knowledge 
regarding the most appropriate approach to prospectively assess risk in  such a complex socio-
technical environment. In other high-risk industries , such as  nuclear power, chemical 
engineering, environmental protection,  and telecommunications, experts have employed a 
number of powerful probabilistic modeling formalisms to help understand and manage systems-
based risks  associated with both standard and novel operating conditions. Our proposed work  
will focus on  the use of a  systems-theoretic strategy for assessing and managing risk in the 
ambulatory care setting.  This strategy  uses probabilistic techniques to manage uncertainties 
and quantify the risk of  specific events and also  incorporates  systems dynamics and control 
theory. We hypothesized that this a pproach would be robust in terms of its ability to model 
interactions  between system components (e.g., different providers and pat ients, policies, 
organizational processes, physical features of the care environment, technical components, 
etc.), human adaptation to new and emerging hazards , feedback loops, and recovery efforts on 
overall system risk. This  is in contrast to  the more conventional probabilistic modeling 
formalisms (PRA), including fault trees  and event trees, which  tend to model accidents in terms 
of linear chains  of events and which can be too cons training for much of the healthcare domain. 
The purpose of this project  was to conduct a comprehensive prospective risk analysis using 
probabilistic  and system dynamics approaches,  focusing on  ambulatory procedural care 
delivered in a large urban setting, and will achieve the following specific aims: 

[1] Identify the human, technical, structural, and organization components and processes 
(patients, family, referring providers, proceduralists, information resources, technology, 
prevailing safety culture teamwork, coordination, communication, schedules, and 
workload) that define the ambulatory procedural system of care 

[2] Using a system dynamics formalism, qualitatively model relationships, interactions, and 
critical interdependencies between these system factors and components and 
determine how they combine to: 

 influence performance 
 compromise patient safety 
 contribute to or increase the risk of adverse events and unexpected variations in 

clinical outcome 
[3] Obtain quantitative estimates of risk, reliability, and recovery as a function of various 

system configurations (i.e., combinations of people, time constraints, acuity, information 
resources, and workload) using probabilistic techniques 

[4] Using the models, simulate system responses using Monte Carlo techniques, assessing 
system performance (e.g., probability of recovery vs. progression to adverse event after 
system perturbation) as a function of: 

 team processes 
 synchronization of staffing schedules with unit acuity 
 time of day, day of week, shift changes 
 access to and utilization of information resources 
 concurrent activities and competing demands for attention in the procedural or 

recovery units 
[5] Use the simulation techniques to identify dominant contributors to risk and leading 

indicators of increasing   system risk, predict  (forecast) the effects of specific interventions 
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and risk reduction strategies, and establish priorities for system redesign 
or organizational change to  optimize ‘safety’ 

[6] Identify other aspects of ambulatory or inpatient care to which the system dynamics and 
probabilistic risk analytic techniques are applicable for prospective risk assessment, and 
develop a process for use of the technique for routine safety assurances  and 
improvement 

Scope
Background and Context: 
As we began our prospective risk assessment, our work was shaped by the following important 
premises: 

1) (Clinical) systems are composed of interacting human and technical  components. 
The interactions are virtually continuous  but usually achieve a state of dynamic 
equilibrium by feedback loops of information and control. 

2) Adverse events or states of heightened risk are the product of dysfunctional 
interactions between human and technical components of the healthcare environment – 
typically flawed/maladaptive feedback, adaptations to local resource constraints, or 
inadequate enforcement of control mechanisms.1 

3) Most adverse events result not from  a unique set of proximal events but rather  from 
a drift of the system  to a state of increased  risk over time as controls are relaxed  due to 
conflicting goals  and tradeoffs. 

4) Systems can function in unsafe states for significant periods  of time. Simply because 
the system has not realized   a catastrophic adverse event does not mean that it is ‘safe.’ 
Persistence in these boundary states is not desirable, as there is little absorptive capacity 
for minor perturbations. 

By modeling the core clinical processes – the component interactions required for these 
processes, feedback, and control mechanisms that influenced performance of each component 
(human, technical, and organizational), our goal  was  to gain insight into risks, vulnerabilities, or 
potential adverse event  causal sequences before the events  actually occurred. Simulation 
would then enable us to  measure how risk changes (i.e., increases or decreases) over time as 
controls are  strengthened or weakened (e.g., due to tradeoffs), as new controls are introduced, 
as components (typically  the human components) adapt and  adjust the quality of feedback, etc. 
Simulation would also enable us to 'see' how much the system has drifted into a  higher-risk 
state as a function of various   human and technical features.  

Setting, Participants, Scope of Problem/Project: BIDMC  Gl Endoscopy  Unit – 
Ambulatory Procedural Population  
The Beth Israel Deaconess Medical  Center is known for its clinical expertise in providing high-
level ambulatory procedural care to  an underserved urban population. Up to 30% of  the 
patients receiving care in the interventional procedural areas at the BIDMC are uninsured. 
Although this does not represent a specifically defined priority population in the US healthcare  

1	 It is important to note that control mechanisms include not just direct intervention but also  indirect   
influence through policies, shared  values, perceptions, tolerance, and other aspects of organizational 
culture. 
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system, the delivery  of safe and effective care to  this subpopulation can  be uniquely 
challenging. Racial  distribution  was  65.7% White, 11.9% Black, 14.4% Asian/Pacific Islander,  
0.3% American Indian, and  7.8% other race. Six percent of  patients reported their ethnicity as 
Hispanic. Other relevant characteristics of the ambulatory  patient population at the  Beth Israel 
Deaconess Medical Center include a substantial number of patients for  whom English is  not a 
primary language. The ambulatory procedural units also serve a large population  of Russian- 
and Cape-Verdean Creole-speaking patients,  creating unique safety  issues around information 
sharing,  patient education, and other aspects  of patient-provider communication. In FY'07, the 
Gl Endoscopy Unit, which served  as our specific focus of risk analysis and modeling (prior to 
generalizing  across other ambulatory procedural  care areas), performed 22,156 procedures, of 
which  1800 involved complex  interventions, such as  ERCP, sphincterotomy, and endoscopic 
ultrasound/biopsy for staging of pancreaticobiliary tumors. Although the rate of  serious adverse 
events was low within this particular unit, we knew  from historical experience at the BIDMC that 
the  high demand for complex interventional procedures performed in the ambulatory setting 
created specific safety challenges and that the unit might be functioning near the margins  of 
safety. First, many of the  patients for  whom interventional procedures  are planned have already 
been identified as  high-surgical-risk patients, with the goals  of nonsurgical intervention being 
either to palliate or to rule out  a specific diagnostic indication for  more definitive surgical care. 
Second, procedures  can have ill-defined endpoints,  making it difficult to predict total procedural 
duration, workload, and other  resource demands. Third, there can be unpredictable and  sudden 
demand from  distant referral sources that must be interposed  with an existing elective  case 
load. Fourth, like other non-OR procedural units, the GI  endoscopy unit functions semi-
autonomously  with respect to scheduling and planning/procurement of shared ancillary 
resources, such as radiology technical support, laboratory support, and anesthesia  services. 
This means that, on any given day, there can be simultaneously  high scheduled demand for 
shared services and resources  from multiple procedural areas within the medical  center, 
creating the potential for significant delays or pressures to  expedite or abbreviate services in 
order to meet institution-wide demand. Finally, this and other non-OR procedural areas do not 
have a mandatory pre-anesthesia screening process, and anesthesiology  staff do not conduct 
an audit of the next-day’s non-OR   procedural schedule as  part of their  staffing routine. Although  
we understood the high-level safety concerns, we had never conducted a formal risk 
assessment to identify how these features of the system interacted to  influence performance. 
Nor did we understand  what were the dominant contributors to the risk.    

Methods
The work evolved in three phases: qualitative modeling phase, quantitative modeling phase,  
and simulation phase. Before discussing  the results  of our risk modeling and  simulation efforts, 
we will review the data sources  that we  used to conduct this work, as these  will continue  to 
serve as  an important source of data for the implementation and evaluation phase of work 
described in this proposal. In engineering domains, information used to support a risk 
assessment or systems-dynamic  modeling is derived from a combination of empirical data, 
expert knowledge, expert opinion, physical  laws, and human factors  and engineering principles. 
We used a similar  approach for this  ambulatory care risk assessment, using information from 
the following combination of sources: 

 Expert opinion from the procedural care staff (MD, RN, technician) and patients at the 
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Beth Israel Deaconess Medical Center 
 Case summaries  from  Joint Commission-mandated root cause analysis reports,  

institutional morbidity and mortality case presentations, and clinical  registries from the 
interventional procedural areas 

 Administrative database of the Beth Israel Deaconess Medical Center 

Data Sources Used 
Expert Opinion:  Expert opinion was  used for qualitative and  quantitative phases, for the 
purposes of  both model refinement and validation. The research team worked one on one with 
additional domain experts  at the Beth Israel Dea coness Medical Center in order to define core 
clinical processes, the  management of patients  as they transition through the physical and 
function phases of care,  the resources required to  achieve these transitions,  and the major 
factors that influenced performance at key nodes  in the process. The data derived from these 
interviews  were then used initially to develop the   qualitative stock-flow models, causal influence 
diagrams, and human behavioral variables and values that will be used  to generate  the master 
system model (more details provided below). Individuals  from primary nursing, nurse 
management, risk management, and physician and  organizational leadership as  well as from 
specific areas of clinical expertise (including gastroenterology, anesthesiology, surgery, and  
respiratory therapy) were recruited to participate in individual sessions with  the study team.   
Through an iterative process, the experts reviewed, refined, and validated the evolving 
qualitative models, focusing on the  relevance and completeness of the  human, technical, 
structural, and organization components and processes that have been incorporated into the 
models. Experts were asked to define key variables that they  perceived influenced the 
‘processing’ of patients and task performance and to assess whether the feedback influences 
were balancing or  reinforcing. The domain experts also assisted with modeling the outcome 
implications of delays. In some cases, there was a need to assign an  importance weight;  this 
was elicited from the experts and by  using a modified Delphi technique. The final role of the 
experts was to provide estimates  of  specific event probabilities and the magnitude of various 
feedback influences  on process steps. We used an  Analytic Hierarchy Process as the   initial 
elicitation method of expert opinion to determine the a priori distribution of key events or  
influence variables, with Bayesian treatment of the probability distributions,  as  this technique 
has had wide  use by risk analysts modeling engineering system safety.  

Case Summary  Reviews:  In conjunction with ongoing quality activities  at the Beth Israel 
Deaconess Medical Center, the research team used case review data from the Patient Safety 
Reporting System, the Adverse Event Management System, and root cause analysis reports to 
develop a broad range of causal  sequences that  might be used in the qualitative modeling 
phase of this work. The  root cause analyses  performed at this institution are more 
comprehensive than the Joint Commission’s format (per Joint Commission on the Accreditation 
of Healthcare Organizations, 2001) and provide a rich classification of system and human 
factors thought to have contributed to the initiation or propagation of the event. Recognizing 
that reported events  do not  accurately reflect prevalence or frequency of actual events (an 
example of an under-reported event is prolonged hypoventilation during procedural sedation), 
we did not use the data  for quantitative modeling of probabilities but  instead used them as a 
source for the qualitative modeling  of theoretical contributors to event initiation and 
propagation.  

Administrative Databases at the Beth Israel Deaconess Medical Center: Clinical process, 
outcome, and resource utilization data derived from the administrative and clinical databases at 

6 



1P20HS017118-01 Meghan M. Dierks, MD  Beth Israel Deaconess Medical Center 

the Beth Israel Deaconess Medical  Center were  used primarily for the quantitative modeling 
phase. The team used five different SQL servers that support 62 linked relational databases 
storing contemporary and historical clinical data  (FY’98-FY’08) and disease registries  for all 
major clinical  areas as well as the more recently implemented computerized order entry data.  
Data were accessed  using the Microsoft Management Console toolkit and SQL Server 
Enterprise Manager Software using  a series of  SQL queries and stored  procedures that had 
been developed for routine institutional quality audits. Categories  of data  that were extracted 
included, but were not limited to, patient and provider scheduling data for procedural and 
inpatient units; acuity levels and patient volume in the target unit population as well as 
concurrent levels  in other units of the hospital; total resource utilization at the unit and case 
levels; nursing scheduling cycles; drug utilization  (both standard and emergency 
pharmaceutical agents); laboratory results matched to the pre-, intra-, and post-procedural 
phases of care in  procedural areas; and subproc ess time stamps for procedural areas. The 
process data in these sources were remarkably  detailed and  enabled us  to model durations of 
key phases of care,  such as pre- procedure preparation, sedation phase, prep/drape phase, 
post-procedure recovery phase, admission and discharge times, room turnover times, 
emergency  case interruptions to the elective scheduled, and delays in scheduled cases due to 
emergency issues. 

Modeling and Simulation Software Used:  We used the AnyLogic modeling and simulation 
software tool to conduct  all of the analytic and simulation modeling tasks.  This is  an object-
oriented application that codes in  Java and is  built on the Eclipse open source platform. 
Because of its object-oriented foundation, this tool supports the development of hierarchical 
levels of component objects. Modeling also is scalable, with collections  of objects and 
components that can be  packaged and re-used,  enabling us  to create a customized library of  
objects. We  felt that this  feature would be of considerable value as we began to generalize the 
work to other aspects of healthcare. The application also features an intuitive graphical 
interface for qualitative modeling: editing dependencies modeling flow,  representing shadow 
variables and polarities. Modeling  formalisms to optimally describe the behavior of the system 
components, we adopted a hybrid strategy involving:  
• A discrete event component to represent the ‘processing’ of a patient in the system of care 

and global state changes of the patient as a function of time and of the specific decisions/ 
actions of physicians 

• A system dynamics component to represent the interactive influences (including feedback) 
of human decision variables, production pressures, and system constraints on actions and 
events 

We used feedback control loops to represent the relationship between two or more model 
variables. Figure 1a depicts a generic example of feedback/control loop formalism. 
Relationships  are either  positive (+, reinforcing; i.e., an increase in the strength  or magnitude of 
one variable causes an increase in the strength or magnitude of the second variable and  
influencing  changes in the same direction) or are negative (-, balancing; i.e., an increase in the 
strength or magnitude of one variable causes an  increase in  the strength  or magnitude of the 
second variable). Figure 1b depicts a specific example of one of the feedback/control loops 
that was actually modeled. In this specific example, high degrees of accuracy with which a 
proceduralist books the anticipated scope or duration of the case leads to  high degrees of 
reliability in the master case  schedule for the day, which, in turn,  reduces the  need to rearrange 
the schedule ad hoc to manage impending staffing or other resource constraints. Note  that it is 
a specific  behavioral attribute of the provider (either accurately or inaccurately representing the 
scope or duration of the case) that interacts with normative scheduling and staffing  functions. 
For each variable (either a system component or a specific attribute  of a component) in our 
evolving model, we systematically identified the family of other variables with which it 
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interacted, assigned the appropriate polarity , and modeled it using this formalism. 

We used Stat:Fit software (Geer Mountain Software Corporation) to fit process data  derived 
from our sources to  standard distributions. This curve-fitting  algorithm uses a Kolmogorov-
Smirnov goodness-of-fit test. The  parameterized distributions were then used as  quantitative 
models for Monte Carlo  sampling during simulation. An example is given in Figure 2, in which  
clinical data  were fitted to both a gamma and a log-normal distribution. 

In cases when the data were insufficient, probability distributions were selected and 
parameterized by the domain experts. As an example, we did not have sufficient data from 
administrative, clinical, or  published literature sources to estimate the additional procedural time 
required to  manage a range of adverse events that might occur during interventional 
procedures. Using expert opinion to  describe the  shape and  scale parameters, we were able to 
establish  a Johnson SB distribution  as an appropriate quantitative model for Monte Carlo 
sampling (see Figure 2  – RIGHT). 

Results
Model Description and Analytical Results 
We initially modeled three specific and dominant clinical processes because they a) were felt 
by the clinical experts to strongly influence overall  safety and productivity in the unit and b)  
were generalizable across other ambulatory and procedural care units. The processes were: 
 Screening  to assess need for anesthesiology  consultation  and use of 

anesthesiology consultation   for moderate sedation  when screening criteria  are met 
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 Assessing  readiness for discharge  to home (vs.  admission to inpatient  unit) 
 Managing the elective  vs. urgent/emergent case load (including ‘takebacks’ – patients  

initially managed as an  elective case but with a complication requiring urgent return/re-
evaluation in the procedural room) 

This comprehensive model has over 250 variables associated with it. Based on our initial work  
with domain experts, a request was  made to focus most closely on the first process, 
assessment  of the need  for anesthesiology consultation and  actual utilization of anesthesiology 
consultation  for moderate sedation  when screening criteria  are met. The initial modeling 
suggested that  this represented an acute vulnerability, justifying submodel refinement. The 
details  of the anesthesiology safety/risk issue can be described as follows: 

In situations  when case  complexity of the case is perceived  to be high,  in which a 
patient comorbidity is believed to put the patient   at very  high risk for a negative cardiac 
or respiratory outcome, or when the probability of crossover from moderate  to deep 
sedation is  high, a protocol (safety control) calls  for the engagement of a specialist 
(anesthesiologist) to assist the GI proceduralist  with management of the anesthetics and  
conduct minute-to-minute physiological monitoring of the patient.   

In situations  when case  complexity is  perceived to be low, when there are no significant 
patient comorbidities, or  when the probability of crossover from moderate to  deep 
sedation is low, the GI proceduralist assumes responsibility for the technical execution 
of the procedure, including both the management of the anesthetics  and the minute-to-
minute physiological monitoring of the patient.   

Because there currently are no validated, objective measures  of case  complexity or ‘need’ for 
specialist involvement in the case, this becomes  a subjective assessment by the GI 
proceduralist involved in the case.  Further, the anesthesiologist specialist is a  limited resource; 
when this service is used, there can be delays in case start times while awaiting release of this 
resource from  another case. As a result, use of  the anesthesiology specialist is frequently 
waived. Even when the GI proceduralist waives   the use of an  anesthesiologist, clinical care can 
proceed without incident. This reinforces the behavior, promoting future waiving even when use 
of the specialty services is indicated. Similarly,  because of the uncertainties in clinical  care, use 
of the anesthesiology specialist also  does not guarantee that  an adverse event will not occur. 
This erodes confidence in the value or efficacy of the serv ice and promotes future waiving. The  
historical adverse event  reviews and interview data also confirmed that  the willingness or 
tendency to disengage or waive the use of  the anesthesiologist is  influenced by: 

 Inherent risk tolerance among the clinicians 
 Perceptions  about the  risks associated with a specific case 
 Confidence in/perceived utility of the anesthesiology services 
 Potential costs associated the use  of the safety control (e.g., delays imposed, increased   

resource costs, longer procedural times, general erosion in  productivity, etc.) 
Using this as  a foundation for the more detailed  submodel analysis, we then proceeded to refine 
the master model to identify the specific interactions between variables and evaluate how they 
drive the system above acceptable thresholds of safety.  In an iterative manner,  we applied the 
same strategy used for the master model construction:  identifying and modeling the clinical 
processes, core components, feedback and interactions, and hierarchical  control structures that 
control the processes within this  submodel. For the purposes of description and discussion, we 
will refer to the of the anesthesiology specialist as  the anesthesiology safety control. 
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Dynamics Underlying Risk-Related Behavior 
Figures 3 and 4 depict the major variables influencing the waiving phenomenon in the clinical 
system studied. There are two major loop structures. The first,  depicted in  Figure 3, qualitatively 
describes  the system factors that influence the dynamics of the waiving phenomenon. The 
second, depicted in Figure 4, qualitatively describes the individual behavioral aspects  that 
influence the dynamics. In Figure  4, there is a  reinforcing loop, in which increasing risk 
tolerance or propensity increases the probability of waiving the anesthesiology safety control 
and explains how this behavior is  reinforced each time an adverse event is avoided.  There is a 
second loop, a balancing loop, that qualitatively describes how  high confidence in the value or 
efficacy of the anesthesiology safety  control decreases the probability of waiving (or, 
conversely, increases the probability of implementing) the control. However, high failure rates  
with  implementation decrease confidence in  the value and efficacy  of the control, thus further 
increasing  the probability of waiving. Time pressures can increase with each  instance of  an 
adverse event,  particularly if it occurs in conjunction  with implementation. ‘Successful’ waiving 
(i.e.,  waiving without incurring an adverse event) reduces time  pressure, whereas ‘unsuccessful’ 
waiving (i.e., waiving with a subsequent adverse event) increases time pressure. The  functional 
forms of these variables are discussed below.  

Processing Global  State Changes of the Patient and System 
We used a  discrete event model to represent the processing  of patients  and state changes to  
the patient in the surgical unit. We simplified our  model by limiting the procedural care unit to a  
modified single-server queuing system with batch arrival of  the entire days’ patient load and 
serial processing of patients (see Figure 2). As noted above, we  used data from the 
administrative and clinical databases  at a large academic medical center  to establish 
representative processing times and operational time intervals for the unit. Patients  are 
generated by the model  at the beginning of this  operational time interval and accumulate in an 
infinite-capacity queue that represents the ‘pre-op holding area’ in the surgery unit. We used our 
clinical data  to establish  a log-normal distribution  (min = 0.17 hr;  ∝  = 0.358 hr;  ⌠  = 0.641 hr) for 
overall procedural duration and a point estimate  of number of cases processed per room per 
day (∝  = 8). In contrast to impatient units, which  are capable  of processing patients 
continuously, 24 hours a   day (around the clock), ambulatory units have fixed operational hours, 
typically  8-12 hours, depending on the specific organization. To reflect this  schedule constraint, 
we established a 12-hour operational time interval for the model. Any patients remaining in the 
queue at the  end of the 12-hour operational time  interval remained unprocessed.  

Key  Event Nodes that Prescribe Change the System State 
After batch  arrival of all  the patients  for the day, each patient is processed individually. There 
are three key events that prescribe  state changes for the patient/system. The first key event 
(see arrow ‘A’ in Figure  5) is a simulated decision by the physician to either 1) implement the 
safety control (i.e., use anesthesiology specialist services during the case) or 2) waive the 
safety control (i.e., perform the case without the use of anesthesiology specialist services). The 
logic defining the transition at this  event node is  described below. The second key event (see 
arrows ‘B’ and ‘C’ in Figure 5) is exposure of the  patient to a  hazard during the course  of a 
procedure. Exposure leads to a transition to one  of two outcomes: 1) adverse event/harm or 2) 
no adverse event/no harm. The transition is probabilistic, with different parameters depending 
on whether the safety control has been waived or implemented. We used clinical data from the  
most complex cases  and established a point estimate (Pr = 0.2 following  waiving [see arrow ‘B’ 
in Figure 1]  and Pr = 0.02 following implementation of the safety control [see ‘C’ in Figure 5]). 
The third key event is represented by  arrows ‘D’ and ‘E’ in Figure 5.
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Functional Forms of Variables 
Variables were created  for the Risk Tolerance, Confidence in the Safety Control, and Time 
Pressure parameters discussed above. The instantaneous value of the variable is defined 
based on parameters in the discrete-event model. Once these three variables are dynamically 
defined, they  influence the Waiving Probability through specific table functions to be  discussed 
later. We established a  baseline value for the Risk Tolerance variable that increases 
incrementally to a maximum each time that the waiving results in a favorable outcome (waiving 
without incurring an adverse event). The variable resets to a  minimum value of zero each time 
that the proceduralist incurs an adverse event. A  continuous first-order delay (using a time delay 
of 12 hours)  was implemented to account for the  adjustment time in surgeon risk tolerance. This 
enabled us to model the quasi-oscillatory nature of risk  tolerance around adverse events, as 
described by the domain experts. We established a baseline value for the  Confidence in the  
Safety Control variable that decreases incrementally each  time that the control is  used and is 
ineffective in preventing an adverse event.  Confidence slowly  returns to baseline as positive 
experience with  the use of safety controls  accumulates over time. The return-to-baseline 
function was implemented as a continuous third-order delay, with a time constant of 100 hours 
(see  Figure 6).  
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The Time Pressure variable was represented as  a function of  the remaining time before the unit 
closes and the approximate time required for all the patients in the queue  to receive appropriate 
care. The time required for each remaining patient was established by  sampling randomly from 
the procedural duration  distribution  discussed above. A simple, continuous, first-order  delay 
with a time delay of 1 hour  was implemented to account for the  perception of time pressure by 
service providers. A Waiving Probability function  was defined  to represent the combined 
influence of  the Risk  Tolerance, Confidence, and  Time Pressure variables and to apply  to the 
discrete-event model. Table functions are used  to define the  effect of Time Pressure, Risk  
Tolerance, and Confidence on Waiving Probability. Based on input from clinical experts, we set 
the Baseline  Waiving Probability to  0.10. As a first approximation, and using all available data, 
the functions used to define the effects are chosen to be linear and to indicate the relative 
importance of each influence on waiving behavior.  

Experimental Results 
We designed a series of experiments to study the complex interactions  between production 
pressures, historical  experience with  adverse outcomes, inherent risk tolerance/propensity,  and  
confidence in and compliance with safety controls as well as how these interactive factors  drive 
the system above acceptable thresholds  of safety.  
Experiment 1: Assessing the Impact of Time Pressure on Waiving Behavior: 
Operating on the assumption that individual physician attributes (e.g., risk tolerance/propensity)  
are more difficult to manipulate in a real-world setting than system properties  (e.g., time 
pressures induced by resource constraints) are, we  conducted an experiment to assess the 
impact of time pressure on overall waiving behavior. We conducted  a series of 100 simulation 
runs, each simulating 500 consecutive operating hours for the clinical unit.  Using average daily  
patient load  and procedural durations derived from historical  data sources, and following the 
parameters described above, we generated data on waiving probabilities. We then  eliminated 
the time pressure variable from the model and repeated the experiments, generating a data set 
representing  waiving probabilities solely  due to the human factors (risk tolerance/propensity and 
confidence in the safety controls). Figures 7a and 7b illustrate a typical comparative run with 
and without time pressures, using a fixed seed for the simulation runs to enable comparative 
analysis following manipulation of the time pressure variable. Statistical analysis of the two data 
sets demonstrated a significant (p <  0.005) reduction in waiving probability with removal of all 
time pressure using a Student’s t test.  
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Experiment 2: Tracking Proportion of Time that Unit Operates Above Safety Thresholds 
Traditionally, ‘safety’ in a  healthcare domain has been measured in terms of outcomes rather  
than processes. This means that clinical units that experience infrequent  adverse events are 
assumed to be safe, even when the process of  care is, in fact, highly vulnerable. The  objective 
behind this  experiment was to measure the percentage of time that waiving probability exceeds 
baseline rates and how this rates  change as a function of unit capacity and case volume. We 
conducted a  series of 100 simulation  runs, each  simulating 500 consecutive operating hours for 
the clinical unit. Using average daily patient load  and procedural durations derived from 
historical data sources,  and following the parameters described above, simulation experiments 
demonstrated that waiving of safety controls exceeded baseline rates 62% (+/-18%) of the 
operational time. Detailed examination of traces  reveal that, over longer operational intervals, 
exceedance is disproportionately related to core  risk tolerance/propensity attributes and 
feedback reinforcement of this behavior, but daily production/time pressures produce  episodic 
high waiving probabilities. We then systematically reduced the workload,  repeating the 
experimental  runs, and determined that, in order to reduce exceedances to < 25% of the 
operational time for the unit, it is necessary to reduce patient  volume from  eight to five patients. 
At this patient volume, time pressures are  sufficiently relaxed to reduce the episodically high 
rates of waiving. Results of a representative simulation run are depicted in Figure 8. 

14 



1P20HS017118-01 Meghan M. Dierks, MD  Beth Israel Deaconess Medical Center 

Discussion of Results and Implications for Intervention  In this preliminary work, we used a 
system dynamics framework to model the complex interactions between production pressures, 
historical  experience with adverse outcomes, inherent risk tolerance/propensity, and confidence 
in and compliance with safety controls.  The models developed have enabled us to study the 
dynamic changes  in risk and develop some understanding of how often the human attributes 
and organizational pressures combine to push the system into an unacceptably hazardous state 
of operation.  This represents a unique approach to modeling and analyzing risk in  healthcare. 
As noted earlier, ‘safety’ and risk in  a healthcare  domain have been measured in terms of 
outcomes rather than processes. This means that clinical units that experience infrequent 
adverse events are assumed to be safe, even when the process of care   is, in fact,  highly  
vulnerable. Our experimental results indicated that specific interventions directed at reducing 
time pressures and delays could significantly shift the percentage of time that the unit  functioned 
in a higher-risk state. In  particular, in reviewing the models  and simulation results, our domain 
experts felt that interventions designed to improve access to  anesthesiology support and  
improvement in the reliability of the scheduling and booking  would significantly reduce the 
magnitude of time pressures facing the system. These results now inform  the series of 
interventions in the local environment. 

Applying this Risk Modeling Technique to Other Areas of Healthcare  

During the study period, we critically evaluated the use of this novel modeling formalism for risk 
assessment  in other healthcare settings/scenarios. We determined that the strengths of this 
approach over conventional PRA rest in the ability  to capture the dynamics of risk   (i.e., how it 
changes over time, and how it changes in response to reinforcing or stabilizing feedback). In 
addition, the  system dynamics component of this modeling strategy is particularly  effective in 
assessing how organizational policies affect decision making   by healthcare providers at the 
point of care and paradoxically may encourage  providers to operate in a high-risk  state with 
respect to patient care.  The types  of models explicitly depict how: 

• multiple system goals are dependent  upon each  other, 
• how the effects of delayed feedback in the system  create instability, and
• how the instability renders system goals unattainable. 

The types of models that this approach generates also enable measurement of the relative 
magnitude and effect of various policies and exploration of system structure changes for the 
achievement of system goals. 
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As part of this project,  we also applied the modeling formalism to assess the impact of 
investment in proactive safety interventions  on overall systemic risk in a  hospital and the 
unintended consequences of reduced reimbursement for management of   hospital-acquired 
conditions and iatrogenic  complications. This work was used as   the basis for a doctoral thes is 
completed by Reza Kazemi-Tabriz, PhD (2011, in Reliability Engineering,  University of 
Maryland), and supervised by Meghan M. Dierks, MD. 	
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