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Structured Abstract

Purpose: Asepsis requirements are critical in the Operating Room (OR) and need to be fulfilled to avoid 
the spread of nosocomial infections and any risk of contamination. This work systematically developed a 
touchless interaction system for the OR to allow surgeons to control systems in a sterile manner.  

Scope: Touchless interfaces powered by gestures and speech allow surgeons to control medical imaging 
systems autonomously while maintaining total asepsis in the OR. The choice of best gestures/commands 
for such interfaces is a critical step that determines the overall efficiency of surgeon-computer interaction. 
In this regard, this work proposes three different ways of obtaining best gestures: 1. gesture-elicitation; 
2. qualitative; and 3. usability approaches. A conjugation of these three approaches was used to 
design and implement our touchless system in the OR.

Methods: We hypothesize that there is a correlation between gestures’ qualitative properties (𝑣𝑣  ) and 
their usability metrics (𝑢𝑢  ). We conducted a user experiment with language experts to quantify gestures’ 
properties. Next, we developed a gesture-based system that facilitates surgeons to control the medical-
imaging software. Next, a usability study was conducted with neurosurgeons; standard usability metrics 
were measured, and their intercorrelation was studied. 

Results: Statistical regression analysis showed that the 𝑣𝑣   scores were significantly correlated with 𝑢𝑢  
scores (𝑅𝑅  2 ≈ 0.4, 𝑝𝑝  < 0.05). Results show that there is a strong signal indicating that 𝑣𝑣  and 𝑢𝑢  are 
correlated. Hence, usability studies can be conducted with a relatively small number of surgeons, as 𝑢𝑢 
scores can be estimated from the 𝑣𝑣 scores.   

Keywords: Gestures, Gesture Recognition, Agreement Analysis, Gesture Elicitation, Usability, 
Participatory Design.  



1. Purpose
Asepsis requirements are critical in the Operating Room (OR) and need to be fulfilled to avoid the spread 
of nosocomial infections and any risk of contamination (Spagnolo et al. 2013). This is especially 
timely given the current state of the COVID-19 pandemic. As such epidemic outbreaks occur, 
newer and alternative forms of interaction with health-related technologies will be required. In the OR, 
surgeons are required to navigate patients’ medical images in order to recognize important anatomic 
landmarks and identify potential lesions in the brain (Wang et al. 2014; Sánchez-Margallo et al. 2017).  
However, current standard devices, such as the keyboard and mouse, pose a major drawback, as surgeons 
cannot have a direct contact with these nonaseptic devices. Hence, surgeons seek help from surgical 
assistants for manipulating the Picture Archiving and Communication System (PACS), 
which can cause miscommunication problems and lead to errors in the procedure (Hurstel and 
Bechmann 2019; O’Hara et al. 2014). In some cases, it is necessary for the surgeon to interrupt the 
intervention, directly manipulate the PACS to obtain the information needed, and go through the 
scrubbing and gloving process again. These solutions are known to cause significant delays in medical 
procedures (Sánchez-Margallo et al. 2017; Wipfli et al. 2016).   

In this regard, touchless interfaces powered by gestures (Farhadi-Niaki et al. 2013)  and speech 
have become an attractive solution, as they have allowed surgeons to control the PACS by 
themselves while maintaining sterility in the OR (Massaroni et al. 2018; Stuij 2013). In addition, these 
interfaces offer an intuitive and a natural way (Tomasello et al. 2019)  of communicating with machines 
and smart devices, as they resemble human-human interaction (Wipfli et al. 2016; Rosa and Elizondo 
2014). However, the choice of gesture languages (the gestures used to control these devices) plays a 
critical role in determining the usability and the acceptability of these interfaces. Hence, the principles 
of participatory design (e.g., gesture elicitation studies) are commonly used to involve end users at the 
early stages of the design process in order to gather information related to domain constraints and their 
preferences (Spinuzzi 2005; Muller and Kuhn 1993). The next step in the design process is to use 
agreement analysis based on majority voting to identify the best lexicon among a set of languages.  

Nevertheless, there are several scenarios when agreement analysis fails to identify the best 
languages. For instance, when subjects do not agree on a gesture, agreement-based approaches are bound 
to select a random gesture from a given pool of gestures (Gonzalez et al. 2018). Next, these approaches are 
based on majority voting among surgeons and do not optimize for the task performance and user 
satisfaction (Vatavu and Wobbrock 2015). These limitations can be addressed by conducting usability 
studies to quantitatively identify the best languages based on how well surgeons are performing the 
image manipulation tasks (Madapana et al. 2019). 

Furthermore, we proposed a gesture selection method, referred to as a VAC 
(Vocabulary Acceptability Criteria) study, as an alternative to the agreement analysis (Gonzalez et 
al. 2018). This method was mainly based on assessing the linguistic and cognitive properties of gestures 
with an end goal of identifying a best gesture language. In contrast to the usability studies, which are 
conducted with end users, VAC studies are conducted with speech and language professionals (SLPs). 
The main goal of this part of the work is to test our hypothesis that there is a correlation between 
gestures’ linguistic properties and usability metrics. In this regard, the gesture lexicons and their 
corresponding VAC scores presented in our previous work (Madapana et al. 2018; Gonzalez et al. 
2018) are used in this paper to validate our methodology. 
To this end, we adopted a systematic approach to develop a gesture recognition system that allowed 
surgeons to manipulate the PACS in a touchless manner. The first step in the process was to identify  



the typical commands in the PACS software that are routinely used in the OR to manipulate the MRI 
sequences. Next, we conducted a gesture elicitation study with surgeons to take note of the preferences of 
surgeons so that they can be incorporated into the gestural system. Next, we conducted a human factors 
study with speech and language experts at Purdue University to find and annotate the important 
qualitative aspects of gestures. Then, we conducted a usability study with surgeons to measure the task 
performance metrics (or usability metrics) in a quantitative manner. In this study, surgeons were asked to 
perform two image manipulation tasks using the gestural system, and usability metrics such as quickness, 
learnability,  and effectiveness were measured. These usability metrics are inspired from the works of 
Farhadi et al. and Bhuiyan et al. (Farhadi-Niaki et al. 2013; Bhuiyan, Picking, and others 2011), who 
studied the usability of a gesture-based control of common desktop tasks. Using regression techniques, it 
was demonstrated that the usability metrics are correlated with the VAC (𝑅𝑅 2 ≈ 0.4, 𝑝𝑝  < 0.05). Hence, 
we concluded that the obtained correlation coefficients can be used to predict the usability scores of 
new gesture lexicons, obviating the need for another usability study. The main objectives of this work are 
to 1. identify the typical commands in the PACS software; 2. obtain gesture vocabularies from 
domain experts (surgeons in this case); 3. determine the best gestures using qualitative 
studies (VAC: Vocabulary Acceptability Criteria) and usability studies; and 4. conduct usability study 
with surgeons to compare three interaction modalities: gestures, speech, and keyboard and mouse 
interfaces.  

2. Scope
In the past 10 years, hand gesture-based interaction systems for PACS control have been introduced in 
the OR in order to reduce the risks of diseases spread through direct contact (O’Hara et al. 2014). Most 
of the research in this field focused on algorithms and sensors enhancement (Fukumoto, Suenaga, and 
Mase 1994; Vatavu 2012; Strickland et al. 2013; Jost et al. 2015). Such studies assumed a smaller and 
constrained set of commands (fewer than 20 gestures) for PACS operation in order to relax the 
complexity of the systems. 

In order to maintain sterility in the OR, it is common practice for a surgeon to convey the 
image manipulation commands verbally to an assistant who is sitting near the computer and operating the 
PACS. However, studies show that this approach involves verbal miscommunications that lead to 
significant delays in the surgical procedures (Ebert et al. 2012; Johnson et al. 2011; Wipfli et al. 2016). 
Recently, gesture-based interaction was compared against direct manipulation with a mouse and against 
verbal transfer of information to an assistant (Wipfli et al. 2016). Their results showed that the 
gesture modality was significantly more efficient than verbalizing the instructions. Multimodal systems 
have also been explored in the area of automatic recognition in the OR. Some of these studies 
focused on interfaces that allow both voice and gestural commands (Mentis et al. 2015). Particularly, 
the work by Grange, Fong, and Baur (2004) aimed to design an architecture that would allow natural 
gestures only, leaving all other actions to voice recognition. The work in Lee et al. 
(2012) expanded the multimodal concept by adding an autonomous modality, in which the system 
determines the actions to assist the surgeon based on the contextual information. Alternatively, gesture 
design from the usability front was studied in Lee et al. (2012) and Norman (2010). For example, 
the work in Johnson et al. (2011) and O’Hara et al. (2014) explored the sociotechnical aspects that 
constrain a gestural interface in the OR. Additionally, Nacenta et al. (2013) studied the 
memorability of gestural interfaces by comparing random, predesigned, and user-defined lexicons. 
The results of this work showed that a user can recall 15-16 gestures with a very little learning time if they 
are customized. 

Agreements studies are a very common first step when deciding on a lexicon for a 
gestural interface. Agreement analyses are also a common part of what is referred as elicitation studies 
(Kray et al. 2010; Vatavu 2012; Vatavu and Wobbrock 2016). The agreement found tends to vary greatly 
according 



to the number of commands, the type of interface, the number of subjects, and the way that similar 
commands are grouped together (Vatavu 2012; Mauney et al. 2010). In addition, some studies have tried 
different grouping taxonomies to determine the properties in gestures that give a higher consensus. In 
Mauney et al. (2010), the gestures were divided into symbolic actions (0.35 agreement) and direct 
manipulation (0.18 agreement). In Luthra and Ghosh (2015), the gestures were classified as metaphorical, 
symbolic, physical, and abstract. Others (Kray et al. 2010; Wobbrock, Morris, and Wilson 2009) came up 
with a taxonomy to describe and classify their gestures and measure the consensus according to those 
properties. Other user consensus works are not limited to the 2D manipulation of the space; in work by 
Piumsomboon et al. (2013), an elicitation study for augmented reality tools was conducted, finding a 
29% agreement between subjects. 

The vast majority of elicitation studies use the metric provided by Wobbrock, Morris, and Wilson 
(2009) and Vatavu and Wobbrock (2016). The best gestures are the ones that are chosen by a 
majority of participants. However, when all participants choose a different gesture, the agreement rates 
tend to be very low, and agreement analysis fails to identify the best gestures. This is a common 
problem, especially in unconstrained gesture elicitation studies, in which subjects can propose a 
gesture of their choice without constraining themselves to a list of predetermined gestures. As a result, 
several research works explored gestures’ qualitative properties in conjugation with agreement analysis 
to determine best gestures when agreement rates are low (Glowinski et al. 2011). As a part of this 
project, we conducted a user study with speech and language professionals (SLPs) to develop a set of 
qualitative characteristics referred to as Vocabulary Acceptability Criteria (VAC) (Gonzalez et al. 2018). 
In this study (known as the VAC study), the six properties proposed were iconicity, simplicity, efficiency, 
compactness, saliency, and economy of movement.  

In addition to VAC-like studies, usability studies are often conducted with end users (surgeons in 
our case) to identify the best gesture languages (Piumsomboon et al. 2013). In the context of gesture 
design, the goal of usability studies is to identify the gesture lexicon that optimizes the task performance 
metrics of surgeons. These metrics include but are not limited to task execution time, error rate, and ease 
of use (Yen and Bakken 2012; Farhadi-Niaki et al. 2013; Bhuiyan, Picking, and others 2011). Farhadi et 
al. conducted a usability study to compare three different modalities for a 3D game: haptic 3D mouse, 
static gestures, and dynamic gestures; these were based on eight criteria (precision, efficiency, 
ease of use, fun to use, fatigue, naturalness, mobility, and overall satisfaction). Tsai et al. showed 
that children and adults outperformed the elderly in tasks related to smartphone manipulation with 
respect to the time taken to finish a task (Tsai, Tseng, and Chang 2017).  

In the context of gestural interfaces, several usability studies were conducted in clinical settings to 
assess a set of gesture vocabularies (Opromolla et al. 2015; Soutschek et al. 2008). The quantitative 
usability metrics that are used in these studies include system accuracy, memorability, learnability, 
intuitiveness, and task completion time (Mewes et al. 2016).  Furthermore, Ebert et al. conducted a user 
study to compare the usability of keyboard and mouse interfaces with respect to speech and gesture-based 
interfaces (Ebert et al. 2012). It was found that the task completion time was significantly higher for 
touchless interfaces. Overall, it was noticed that the number of subjects in these user studies varied 
from 10 to 15, as neurosurgeons are busy and constrained in the amount of time they can allocate.  

In this context, our main objective was to develop a full-stack touchless interaction system, 
considering various aspects of gesture design and surgeon usability. In this process, we developed novel 
techniques to measure agreement analysis using gesture descriptors, and we established a 
correlation between gestures’ qualitative properties (VAC) and the usability metrics. When such 
correlation existed, it was shown that the number of surgeons for the usability study can be 
significantly reduced. Last, the usability study 



conducted with surgeons showed that they prefer gestures and speech-based systems, as they are 
more natural and intuitive to use; however, they are considered to have a learning curve, which led to 
increased task completion times.  

3. Methods and Results
Our methodology has been subdivided into five studies (Task A1, Task A2, Study 1, Study 2, and Study 
3). These subtasks are described in more detail here.  

3.1 Task A1: Finding Typical Functions of PACS

Objective: The goal of this study was to 
obtain the typical functions of the Picture 
Archiving Communication Systems (PACS). 
Synapse, a popularly used PACS 
radiology image browser, was used in 
this project. Three medical image 
manipulation tasks, encompassing 
most of the functionalities of Synapse (the 
PACS system utilized), were considered.  Figure 1. Typical commands of PACS.

Participants: This study consisted of nine neurosurgeons operating the PACS software (Synapse). This 
study was approved by the Institutional Review Board (IRB) of the Indiana University School of 
Medicine. Signed informed consents were obtained from the participants prior to beginning the study.  

Experimental Protocol: Initially, each neurosurgeon was asked to accomplish these tasks using keyboard 
and mouse interfaces. By tracking the menu choices, mouse motions, and selections, all functions 
required to complete the tasks using the PACS system were collected. The outcome of this study is an 
extensive list of 34 PACS commands, as depicted in Figure 1.   

3.2 Task A2: Determining Surgeons’ Gestures for PACS Commands 

Objective: The goal of this task was to conduct a gesture elicitation study with surgeons to identify the 
gestural preferences of the surgeons, as they have the domain knowledge about the constraints in the OR.  

Participants: This study consisted of nine neurosurgeons eliciting gestures for the PACS 
software (Synapse). This study was approved by the Institutional Review Board (IRB) of the Indiana 
University School of Medicine. Signed informed consents were obtained from the participants prior to 
beginning the study.  



Experimental Protocol: Initially, the subjects were asked to 
follow three predetermined steps in the same order: 1) 
gesture design on a drawing sheet: required subjects to 
design and draw the gestures (as shown Figure 2) 
corresponding to each of the 34 commands of Synapse 
on a drawing sheet; 2) gesture illustration: required the 
subjects to perform each of the chosen gestures in front of 
Microsoft Kinect v2; 3) manipulation task using 
Wizard-of-Oz setup: required the subjects to perform a 
tumor identification task using the chosen gestures, 
following a Wizard-of-Oz experimental setup. In this 

Figure 2. Gestures drawn by the surgeons on the
drawing template.  way, we obtained the gestural preferences of the  

neurosurgeons for the 34 PACS commands. These 
gestures will be further used in the next experiments to study the agreement among subjects, to provide 
guidelines for gesture selection, and to determine the Vocabulary Acceptability Criteria (VAC) to 
quantitatively evaluate gestures.  

This design allowed the subjects to naturally control the software using gestures without realizing 
that the investigator (the wizard) interprets their gestures and controls the program. This experimental 
design isolates the subject from the wizard to capture their natural movements. This study resulted in a total 
of 306 gestures (including combined and single gestures). In other words, we obtained nine lexicons 
corresponding to nine surgeons, each containing a total of 34 gestures (34 commands). These gesture 
lexicons were further utilized to analyze the how well surgeons agreed on gestures and/or its properties. 
Subsequent data analysis led to novel techniques related to agreement analyses and design guidelines for 
gesture-based interfaces. The proposed methodology and the results associated with these findings are 
discussed in detail in the next section. 

3.2.1 Agreement Analysis

Agreement analysis quantifies the degree of preference among the users. It is a well-known fact that the 
participatory designs consisting of user elicitation studies are crucial for developing effective and usable 
interfaces. This analysis is especially beneficial in expert domains (i.e., neurosurgeons, urologist, 
radiologists), because these populations have intrinsic knowledge about the environment that shapes 
the gestures that they elicit. Thus, determining the gestures without the participation of end users in the 
early stages of a design process can potentially lead to suboptimal lexicons and unusable interfaces. The 
gestures obtained in task A2 were studied to assess the level of agreement among neurosurgeons. 
This consensus was obtained through two methods: Method 1. the state-of-the-art metric used for 
gestural agreement in a group; and Method 2. a metric based on a novel representation for gestures 
that uses their semantic descriptors. The following sections explain both metrics in detail. 

Method 1
The state-of-the-art approach proposed by Wobbrock et al. (2008) is widely used in the literature to 
measure the level of consensus among subjects. That method has two stages: grouping and evaluation. In 
the grouping stage, the gestures for the same command are clustered by similarity. Thus, all the gestures 
that are placed in the same group are considered equal. Then, the consensus for each command is obtained 
by summing the squares of the size of each group, divided by the total number of gestures available for that 
command. This metric takes a value of one when there is complete agreement (consensus) (i.e., all the 



gestures chosen for a command were identical). When there is no agreement, the value of the metric is 1 
over the number of gestures for that command. 
Let us first define the notations that will be used throughout the paper. Let 𝐶𝐶  be the total number of 
commands or referents for a system. Let P 𝑟𝑟  be the set of gestures elicited by the user for the 𝑟𝑟  𝑡𝑡  ℎ 
command, in which  𝑟𝑟  = 1, … , 𝐶𝐶  . Additionally, let  P i  

r  be a subset of gestures for the 𝑟𝑟 tℎ command 
that are considered identical. Thus, | P ir| would be the number of identical gestures in the 𝑖𝑖  𝑡𝑡  ℎ set for 
the 𝑟𝑟 𝑡𝑡 ℎ command.  Finally, let 𝑢𝑢 𝑟𝑟  < | Pr| be the number of unique gestures for the command 𝑟𝑟  . The 
total number of gesture examples ( Nr ) for the command 𝑟𝑟  can  be represented similarly.  

The agreement index proposed by Wobbrock et al. (2009) is currently the most commonly used metric, 
and it is defined as follows, in which  𝐴𝐴 𝑟𝑟  is the level of agreement for the 𝑟𝑟 𝑡𝑡 ℎ command. 

There are two major problems with this approach. The first one is that, when there is no agreement 
at all, the agreement value is not zero. The second one is that the literature does not provide good 
qualitative interpretation of this metric. For example, if an agreement of 20% is found, this does not 
mean that 20% of the group agrees on a gesture. Thus, this metric is of little use when looking for an 
optimal lexicon to control a medical software. To compensate for the limitations of the state-of-the-art 
approach, a novel method to measure the level of agreement is proposed and explained in the next 
section. 

Method 2
Previous efforts to find the level of agreement considered gesture as a concrete entity, ignoring embedded 
properties of the gestures (e.g., hand shape, hand motion trajectory, plane of motion, etc.). We propose 
to utilize the same set of semantic descriptors used for the Heuristic Generation (Section 2.2.1) to 
compute the level of agreement for each command.  

To measure the similarity between two gestures, the well-known Jaccard metric 𝐽𝐽 was used. This 
metric is a suitable method to evaluate the distance between two sparse binary vectors. The overall 
agreement with Jaccard can be calculated using the equation below. This formula averages the agreement 
between all the possible pairs for the same gesture, for all 34 gestures. In this equation  represents the 
total number of commands, and 𝑔𝑔  represents the total number of gestures per command.  𝑆𝑆  and 

𝑘𝑘  represent the gesture examples 𝑖𝑖  and 𝑗𝑗  for the command 𝑘𝑘 . 

The square root of 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 represents the percentage of subjects that agreed on a gesture (𝑁𝑁𝑜𝑜𝑒𝑒). This offers 
a very clear and intuitive interpretation for the consensus between surgeons. The next section shows the 
results of the agreement analysis for Metric I and Metric II. Additionally, agreement is also studied for the 
full gesture (context and modifier together), the context alone, and the modifier alone. 



Experiments and Results 
Splitting commands into context and modifier: The commands obtained in Task A1 were grouped into 
meaningful clusters based on semantic and numerical similarity, as shown in Figure 1. This allowed us 
to reduce the number of gestures that surgeons would need to remember. We adopted a context-
based approach, in which the same gesture would mean different things based on the context (the layer) 
used. This gesture-based interface’s architecture consists of two layers: context and modifier. The context 
represents the general action that the surgeon wants to perform (i.e., Zoom, Pan, Scroll), and the modifier 
represents the different options for that command (i.e. In and Out for Zoom or Up, Down, Left, and Right 
for Pan and Switch Panel). This approach resembles interpersonal communication, in which limited 
numbers of gestures are reutilized and their meaning is understood according to the current context. 

Experiments: We performed an agreement analysis using both the traditional method (Metric I) and 
our approach based on semantic descriptors (Metric II). The results are shown in Table 4. This table shows 
the agreement index for the full gesture (context + modifier), context only, and modifier only. The reason 
for splitting the results into these three categories relies on the fact that the command’s context tends to be 
more abstract (i.e., open PIW, change layout, select contrast present, etc.), whereas the modifier actions 
tend to correspond to a more direct effect on the image (i.e., up, down, left, right, zoom in, zoom out). 
Thus, the gestures for the contexts had a very high variance between subjects when compared with the 
gestures for the modifiers (refer to Table 1).  
Results: The highest 
agreement index was 
found with the
modifier gestures,
with a value of 0.34 
for Metric II (see 
Table 4). A one-
tailed, paired, sampled 
T test (  = 34 
− 1 = 33, 𝛼𝛼  = 0.05)
was performed to
ensure that the 
difference between 
the metrics was
statistically significant. Figure 3. Visualization of popularity of descriptors for each command across all subjects. 

The red colors are closer to 1 and the blue color is closer to zero.The null
hypothesis stated that the agreement indices for Metric I and Metric II were the same, while the alternative 
hypothesis stated that the index of Metric II was greater than the index of Metric I. The difference between 
methods was statistically significant (𝑝𝑝 < 0.05) for the modifier and the gesture + modifier. The context 
did not show a significant difference between the metrics, because it was too low in both cases.
These results show that more abstract commands tend to produce a lower agreement between subjects (this 
is an intuitive finding). Additionally, Metric II captures a greater agreement index, because the subjects are 
choosing gestures that have common properties even when they are different. In addition, the results 
contradict the intuition that the agreement (without semantic descriptors) between subjects in the same 
domain should be higher than 30% agreement for 70% of the subjects (Stern, Wachs, and Edan 2008). This



could be explained by the fact that many PACS commands are complex hard to translate to gestures that 
are highly iconic, even when working solely with neurosurgeons (refer to Figure 3). 
Interpretation of agreement: The square root of Metric II can be directly interpreted as the percentage of 
subjects that agreed on one gesture. This means that, on average, 58% of the subjects agreed on a gesture 
for the modifier of each command (refer to Table 1 and Figure 4). Again, the modifier is the part of the 
gesture that shows the highest level of agreement. All the top commands involve gesturing a number in the 
modifier. This means the surgeons have a very standardized way of gesturing the numbers from one to 
four. 

Table 1. Consensus measured by Metric I (State of the Art) and Metric II (The Jaccard distance using semantic 
descriptors). (* = statistically significant, p < 0.05) 

Category Metric I (SOA) Metric II (SDs)

Context 0.13 ± 0.02 0.1146 ± 0.09

Modifier 0.23 ± 0.13 0.34 ± 0.14*

Context + Modifier 0.13 ± 0.02 0.29 ± 0.06*

3.3 Study 1: Develop Vocabulary Acceptability Criteria for Gestures 

The goal of this study was to develop Vocabulary Acceptability Criteria (VACs) that can potentially explain 
the qualitative aspects of the gestures. Furthermore, the obtained gestures were compared, ranked, and 
evaluated using these VACs in order to obtain a best gesture lexicon. The final gesture recognition 
interface consists of these carefully selected gestures so as to enhance the usability of the overall system. 
This study consists of three major parts: Part I – Creation, Part II – Evaluation, and Part III – Validation. 

3.3.1 Part I: Creation of Vocabulary Acceptability Criteria (VACs) 
The objective of this part was to come 
up with a series of criteria to evaluate 
gesture lexicons. We named these 
criteria VAC, which are means to 
quantify, compare, and rank the 
gestures with an end goal of obtaining 
the best lexicons from an available set. 

Figure 4. Consensus of the top five gestures with highest level of 
agreement.

For obtaining VACs, a discussion 
panel composed of 17 SLP experts 
was recruited through the Speech and 
Language Department of Purdue University. The reason behind choosing the SLP experts was that, 
in literature, it has been shown that speech and language expertise could help design more effective and 
user-friendly interfaces.  

We used an adapted version of the Delphi method to engage experts in discussion. The Delphi 
method is a structured communication technique to systematically engage a panel of experts in 
discussion. In this method, participants are encouraged to discuss their viewpoints on the topic 
being discussed and to present their opinions and reason behind them. Furthermore, participants are 
encouraged to revise their original opinions in light of opinions of other participants. This 
process is supposed to decrease the variation in opinions/choices with time and converge to better/
correct choices. 



This part of VAC creation lasted for about an hour and a half. First, the experts were shown two 
practice gesture lexicons from the ChaLearn Gesture Dataset (CGD 2011), which is a standard dataset 
in gesture recognition research. Then, they were shown a random sample containing 3% of the 
gestures from the lexicons collected in task A1. The purpose of showing such a small percentage was to 
prevent a bias toward the surgical lexicon. After every three gestures, the experts were asked to come up 
with generalizable and possibly independent (orthogonal) gesture attributes (VACs). After two rounds 
of discussion, the experts proposed 18 VACs, namely contrast, memorability, replicability, consistency, 
intuitiveness, combinatorial, distinct hand shape, repetitiveness, compactness, location on body, 
iconic, emulation, distinctiveness, complexity, directionality, efficiency, multistep, and visual saliency. 
Then, the experts were asked to merge the VACs that represented the similar attributes (similar 
meanings). VAC is in a three-dimensional space spanned by time, meaning, and the space. The 
merge resulted in the following set of six final VACs: 1. Iconicity - how much gesture looks like the 
command that is associated with; 2. Simplicity - how straightforward are the movements; 3. 
Efficiency - capability of conveying more information in less movement; 4. Compactness - how 
much the gesture covers the space around the body frame; 5. Salience - how discriminative is the 
movement of the hand; and 6. Economy of Movement - amount of movement involved in the gesture. 

3.3.2 Part II: Evaluation of Gestures using the Created VACs
The objective of the evaluation step was to assign six VAC scores (one for each VAC) to each of the 
252 gestures. For this step, an additional group of 12 SLP grad students was added to the existing group 
of 17 SLP experts. Each expert was assigned one command (i.e., nine gestures corresponding to that 
command). However, each student was assigned two commands to evaluate. For this study, the number 
of commands was reduced from 34 to 28. The reduced list of commands is shown in Figure 1. The 
commands, such as Layout four and six panels, that are not often used by surgeons were ignored in order 
to increase the number of replications. Overall, each expert took about 45 minutes, whereas 
students took about an hour and a half to accomplish the assigned task. 

A block randomization strategy was followed to assign 
commands to experts and students. As discussed in the 
previous report, the commands were organized as context 
and modifier. For example, Pan is referred as context, 
whereas pan up, down, left, and right were considered its 
modifiers. Hence, the commands can be classified into 12 
command groups. In the above example, Pan is considered 
as a group. Similarly zoom, manual contrast, etc. are 
command groups. All the commands (both context and 
modifiers) are completely randomized in the beginning of 
the experiment.  Experts were given the preference, and a 
modifier from each group was assigned to each expert in 
a sequential manner.

Figure 5. A minimal set of three-way 
combinations necessary to establish ranking for 
nine elements: A, B, C, D, E, F, G, H, and I. To 
rank nine elements requires 16 comparisons. 

Once one modifier from all groups was assigned to the experts, the next modifier was assigned to the rest of 
the experts until all the modifiers were assigned to one of the subjects. Students were assigned the 
commands in an equivalent manner, starting from the commands remaining after completing the 
assignment to the experts. However, it was ensured that each of the students was assigned two commands, 
whereas experts were assigned only one command. Hence, 13  (17 + [12 × 2] − 28) of the 28 
commands had two replications.  



A variant of the pairwise 
comparison method was used to 
obtain the VAC scores. For each 
command and a VAC, a set of three-
way comparisons among the nine 
respective gestures was presented. 
The expert had to order these three 
gestures according to the VAC criteria 
that was shown (from low to high). 
Figure 5 shows the minimum set of 
three-way comparisons necessary to 
infer a full order between nine gestures.

Figure 6. Two examples of score assignment for the gesture scroll up. 
Iconicity is illustrated on the top and Efficiency on the bottom. The

ranking assigned by the ordering is mapped to a score between 0 and 1.

 The sequence in which the comparisons were presented was completely randomized. A VAC 
score between 0 and 1 was inferred from the ordering generated by the SLPs, as illustrated in Figure 6.
In the case of repetitions, the overall score was computed as an average of the scores obtained from 
multiple SLPs. Through this process, a total of six scores (one for each VAC) was assigned to each 
individual gesture, generating a total of 1512 (28 × 9 × 6) evaluations. The scores obtained for each 
command in Figure 1 across each lexicon and VAC are shown in Tables from 5 to 10.  

By taking an average of the VAC scores across all the 28 commands, we found that not all of the 
lexicons were equally good. A pairwise T test was performed between the lexicons that had the top scores 
(namely, 8, 6, and 1) and the rest of the vocabularies. A statistically significant difference was found. Thus, 
we can claim that, according to the developed Vocabulary Acceptability Criteria, lexicons 8, 6, and 1 
were better than the rest, as depicted in Figure 7. We replaced the VACs of Complexity and Amount of 
movement by Simplicity and Economy of movement, respectively. Because the VACs of Complexity 
and Amount of movement indicate a better performance when the value is close to zero, we 
used a complementary complex so that all VACs would indicate “good performance” when their score 
is close to 1. 

Figure 7. Mean VAC scores of lexicons.

3.4 Study 2: Studying the Relationship between VACs and Usability Metrics

The goal of this study is to measure the usability metrics of gesture lexicons generated from VACs and find 
out the correlation between VAC scores and usability measures. Usability metrics are means to evaluate 
gesture lexicons obtained from the gesture elicitation study. The hypothesis is that lexicons 
corresponding to higher VAC values are more usable (i.e., there is a positive correlation between the 
VAC values and usability metrics). There are six major usability metrics, as defined here. The IRB, 
statistical design, and development of gesture recognition interface for this study are partially completed 
and still in progress.  



1. Task Completion Rate: It is the ratio of tasks completed to the total tasks. A task is considered
complete when a user finishes the task from beginning to end without any critical errors.

2. Time of Task: It is the time required to complete a task.
3. Error-Free Rate: It is the proportion of the participants who finished the task without any error.
4. Critical Errors: Critical errors are the errors that either lead to wrong outcome or do not lead to

completion of task.
5. Non-Critical Errors: These errors are in general recovered by the subjects and don’t lead to

unexpected outcomes, though they increase the time on task and decrease efficiency.
6. Learnability and Memorability: These parameters are used to evaluate the accuracy and time taken

by subjects to perform gestures during the task.

Population: Twelve medical professionals, including nurse practitioners and neurosurgeons with more 
than 2 years of experience in operating PACS software known as Synapse, were recruited on a 
voluntary basis. The subject pool consisted of eight men (age: 36 ± 7) and four women (age: 38 ± 7). 
Overall, there were seven neurosurgeons and five nurse practitioners in the subject pool. All were 
assigned to the same pool regardless of their position, as they were equally experienced with the 
Synapse software. This study was conducted at Goodman Campbell Brain and Spine Center, 
Indianapolis, which is a part of the Indiana University School of Medicine (IUSM). Written informed 
consent was obtained from all subjects. 

Experimental Protocol: Let us start by defining notations. Let L1, L2, … LR be R gesture lexicons. Let 
there be S participants and T tasks in the usability study. Let v1, v2, ... vM be the M VAC and u1, u2, ... 
uN be the N usability metrics. We conducted two pilot studies and noticed that performing each task using 
our gesture recognition system takes approximately 15 minutes. Given that surgeons are time constrained 
and that the time allotted for this experiment was 1 hour, we created two possible designs for the task at 
hand: 1. Each subject performs one task using all lexicons; and 2. Each subject performs all the tasks using a 
single lexicon. We followed a completely randomized procedure to determine the order of task and 
lexicon assignment. For instance, if there are two lexicons, two tasks, and two subjects, then subject 1 is 
assigned <L2, T2, T1> and subject 2 is assigned <L1, T1, T2>. As a part of the experimental design, 
subjects were first asked to go through a training procedure to help them get familiarized with the task 
and the gesture recognition system.

Gesture Recognition Interface: The first step in the pipeline 
was to develop a gesture recognition interface that allows 
surgeons to manipulate the PACS in a touchless manner. 
This system was equipped with fail-safe mechanisms to cope 
with the errors associated with the gesture performance and 
the recognition algorithms. Figure 8 shows a surgeon 
controlling the MRI software using his hand gestures.  

A Microsoft Kinect camera was used to record 
the RGB-D information of the subjects. This information 
was processed to obtain 3D body skeleton features from 
depth data. Next, a Deep Learning Neural Network was 
used to create the 2D hand skeleton features from the RGB 
videos using Convolutional Pose Machines (Pavllo et al. 
2019). An ensemble of Support Vector Machines (SVM) 
classifiers was trained based on body skeleton features, hand
skeleton features, and a conjugation of body and hand features. 

Figure 8. Surgeon controlling MRI 
software using gestures and speech. 



These algorithms were trained on a per-lexicon basis so that there were considerably fewer target classes, 
thereby achieving higher accuracies of recognition. Hence, there were four trained models, one for each 
gesture lexicon. The probabilistic predictions obtained from this ensemble of models were combined 
to make the final prediction. Figure 9 depicts the flowchart of the gesture recognition pipeline. It was 
found that the final gesture recognition accuracies varied from 80% to 95% depending on the lexicon.  

Though the gesture recognition accuracies are relatively high, they are not enough for a real-time 
gesture recognition system. In other words, surgeons may get frustrated when performing gestures that 
are hard to recognize (low accuracies), as they need to repeat them multiple times before it is 
accurately recognized. In this regard, we developed a feedback and a fail-safe mechanism in order to make 
the system robust to errors. This mechanism is facilitated by a dance pad that allows surgeons to visually 
navigate across the top predictions of the system and make a final decision. In other words, it 
further allows them to navigate through the top five predictions, with all existing commands if 
necessary, before selecting the final command using the dance pad.  

This feedback mechanism acts as an acknowledgement system, as the surgeon gets a 
chance to accept/reject the command after the gesture is performed. The top five command predictions 
were shown to the users, and they got an option to pick one of those options or utilize another option 
that will let them look at all the commands on the screen. The last option is a fail-safe mechanism in 
the sense that users would be able to finish the task independently without any human intervention. 
Once the gestures were recognized and mapped to one of the commands available in the Synapse 
software, we developed an automation software to automatically execute the commands. 

Usability Metrics and Annotations: Three 
usability metrics were considered to identify the 
best gesture lexicon among a group of lexicons. 
The first characteristic, quickness, was defined as 
an average rate at which a gesture was 
performed by the participants. It was measured 
as an inverse of the time taken to perform a 
gesture. The second property, learnability,  was 
defined as the ease at which participants learn to
perform and recall the gestures in the lexicon. It was measured as the inverse of the frequency of focus 
shifts. The reason for this is that, when the gestures were committed to memory, there was no need to look 
at the cheat sheet with the commands and the pictorial representation of the gestures (thus reducing the 
focus shifts). The third entity, effectiveness, was defined as a measure of success in gesture performance. It 
was measured as the inverse of the frequency of errors committed while performing the image manipulation 
task using a particular gesture lexicon.  

Figure 9. Gesture recognition pipeline.  

Let us define some notations. Let the subscript i refer to the command i and superscript j refer to the gesture j 
and there are G gestures in total for each command. Let t 1 2 G

i , ti , ti  be the time taken to perform the respective 
gestures. If a gesture is performed multiple times by the same or different subjects, let t j

i  define the average 
time taken to perform gesture j of command i. Let t min

i  and t max
i   be the minimum and the maximum time 

taken by all the gestures corresponding to the command i (i.e., t min max
i  = min[t 1

i , t 2 G
i ,...ti ] and ti  = 

max[t 1,t 2 G
i i ,ti ] ). Let z j

i , f j
i , and m j

i  be the average number of occurrences, the average number of focus shifts  
and the average number of errors occurred, respectively. Let q j

i , l j
i , and e j

i  refer to the usability metrics of 
quickness, learnability, and effectiveness, respectively. 



Now, they are mathematically expressed. Note that the usability metrics were appropriately normalized to 
ensure that they range from [0 to 1], and the gestures with higher usability indices were considered as better 
gestures. For instance, a value of 𝑞𝑞  𝑗𝑗 i= 0 indicates that this particular gesture takes much longer to 
perform than 𝑞𝑞 𝑗𝑗

 i = 1. Similar interpretation is valid for other metrics such as 𝑙𝑙 𝑗i and 𝑒𝑒 j
i.

Next, the data obtained from the usability study were annotated with respect to the aforementioned 
metrics. In this regard, a software interface was developed to annotate user focus shifts and errors. The 
metric quickness was computed directly using the timestamps. Note that the time taken to navigate the 
acknowledgement dance pad was not considered, as we were only interested in the time taken to perform 
the gesture. Next, the metric learnability was measured indirectly using the focus shifts. To compute this 
metric, we first annotated if there was any shift of focus between the PACS screen and the drawing template 
1 or 2 seconds prior to performing the gesture. The information related to the focus shifts was annotated by 
looking at the RGB video that was recorded by the Kinect camera. Similar to focus shifts, the metric 
effectiveness was measured using the frequency of errors. Overall, each gesture was represented as a 
three-dimensional vector, as there are three usability metrics. 

Correlation Analysis: Let there be K gestures in total, M VAC and N usability metrics. Let vi E [0, 1]K 
∀ i = 1, 2, … , M be the VAC vectors and uj E [0, 1]K ∀ j  = 1, 2, … , N  be the usability vectors for 
all gestures. Let v = [v1, v2, … , vM] be the VAC matrix of dimension K × M and  u = [u1, u2, … , 

uN] be the usability matrix of size K × N. Now, the goal was to study the multivariate correlation
between both the quantities (u and v). Formally, we want to estimate the function f ([0, 1]M → [0, 
1]N): V → U, in which V and U represent the VAC space and the usability space, respectively.
The correlation analysis was conducted at two stages: 1. univariate versus multivariate, and 2. overall
and per-command scenarios. In the univariate analysis, the correlation between every VAC with
respect to every other usability metric was considered. Hence, there will be M × N correlation tests.
Note that g is a function that can be either linear or nonlinear.

uj = g(vi) ∀ i E {1, … , M} and j E {1, … , N}
However, in the multivariate analysis, each usability metric was correlated with a group of M VAC, 
which captures the interdependencies between the VACs. 

uj  = g(v1, v2, … , vM) j E {1, … , N}

Next, the correlation analysis was 
subdivided into overall and per-
command scenarios. In the overall 
scenario, intercommand differences 
were ignored, and the gestures were 
evaluated independently. Hence, all 
the gestures were considered 

simultaneously for the correlation 
analysis. However, in the per-command scenario, we wanted to study the intercommand differences and 
study each command separately. Hence, only those gestures that corresponded to a particular command 
were considered for studying the correlation. 

Figure 10. Usability indices of gestures. 

Experiments and Results: The raw data collected from this study was used to compute three usability 
metrics: quickness (𝑢𝑢 1), learnability (𝑢𝑢 2), and effectiveness (𝑢𝑢 3). Figure 10 depicts the usability 
indices for 



each of the 20 commands. Note that a value of zero indicates a bad gesture, and a value of one indicates a 
good gesture. Figure 10 shows only one command from each group. For instance, scroll up and scroll 
down belong to the same group called scroll and have approximately the same usability indices, as 
they are complementary gestures.  

Figure 11. Descriptive statistics of user satisfaction for the gesture recognition system. Note that 0 and 4 were the 
minimum and maximum possible scores, respectively. 

In this Table, 𝑢𝑢 1, 𝑢𝑢 2,  and 𝑢𝑢 3 refer to the 
three usability metrices, and the first column refers to the 
commands in the Synapse software. The lexicons L1 and 
L2 were worst lexicons, and L3 and L4 were best 
lexicons, according to VAC. Note that there might be few 
good gestures in the worst lexicons and vice versa in the 
best lexicons. Hence, the usability indices of some 
gestures in the worst lexicons can be considerably higher. 
Given our hypothesis that usability metrics and VACs 
are proportional, we expect the usability indices of worst 
lexicons to be relatively lower than their best 
counterparts.  

Figure 12. Univariate correlation between VAC and
 usability indices.

For instance, considering the gesture corresponding to 
pan down  command, the value of 𝑢𝑢  1  was 0.0 for            
lexicons L1 and L2; however, it was 1.0 and 0.7 for L3 
and L4, respectively. This trend of having low usability indices for the worst lexicons was observed for 
other commands, such as manual contrast, layout, rotate, zoom, and switch panel. However, there are some 
exceptions, such as the flip command (i.e., the value of 𝑢𝑢 1 was 1.0 for L1, 0.0 for L2 and L3, and 0.7 for 
L4). This indicates that the gesture for the flip command has relatively high quickness property for L1 and 
L4. 

Furthermore, the usability indices for lexicon L2 were close to zero for all commands, indicating that 
this is a bad lexicon according to both the VAC and the usability metrics. Similarly, the usability indices 
for lexicon L3 and L4 were close to 1.0, indicating that most of the gestures in L3 and L4 were 
good according to VAC and usability metrics. However, for lexicon L1, half of the usability indices 
were less than 0.5, indicating that approximately half of the gestures were good and the other half were 
bad. 

Multivariate Correlation: Once the usability indices were computed, our next goal was to study the 
dependencies between the VACs and usability metrics. In other words, our objective was to test the 
hypothesis that there was a direct relation between the VACs and usability metrics. Identifying such 
correlations would allow us to predict the usability indices given the VAC values. In this regard, the 
correlation analysis was conducted in two conditions: 1. overall conditions; and 2. command-dependent 
conditions.  

In the command-dependent scenario, the gestures corresponding to each command were analyzed in 
isolation. For instance, in our case, there were four gestures for each command. Hence, the correlation 



between the VAC and usability metrics was studied for those 
four gestures. However, in overall scenario, the differences 
between the commands was ignored (i.e., the correlation 
analysis was conducted for 80 gestures). Although the 
former approach considers the intrinsic differences 
between the commands and treats them independently, the 
latter approach ignores such differences. Note that the 
latter approach produces one correlation test per usability 
metric; however, the former approach produces 20 correlation 
tests (there are 20 commands) per usability metric.  

Figure 13. Correlation between efficiency and 
learnability.

In both of these conditions, we conducted univariate 
(refer to Figure 12) and multivariate analyses. In
univariate analysis, each usability metric was correlated with each of the VACs separately, resulting in 
18 (6 x 3) correlation tests. The correlation can be easily visualized in the univariate scenario, as there is 
only one dependent variable (VAC) and one independent variable (usability index). However, in 
multivariate analysis, each usability metric was considered to be a function of all VACs, hence 
producing three correlation tests (there are three usability metrics). Furthermore, the strength of 
correlation was reported using the coefficient of determination (R2) and p value. 
Figure 13 depicts the correlation 

between the usability metric, 
learnability, and the VAC, simplicity. 
Note that the gestures corresponding to 
the worst lexicons were 
represented as blue triangles; the 
gesture in best lexicons were 

represented using green squares. Figure 14. Descriptive statistics of the user study to compare modalities.
Furthermore, the worst gestures were concentrated at the bottom left corner, whereas the best gestures 
were located at the top right corner of the plot.  

At the end of the user study, subjects were asked to populate a satisfaction questionnaire that was an 
adapted version of the NASA-TLX. The score range for each question was 0-4, in which 0 represents 
strongly disagree and 4 represents strongly agree. Overall, it was found that 11 of 12 surgeons agreed 
that the gesture interaction system provided enough capabilities to successfully complete the image 
manipulation task. Similarly, 10 of 12 surgeons agreed that the system was easy to work with. However, 
six of 12 surgeons noted that gesture interaction system increased the amount of time taken to 
complete the procedure. The ratings obtained from the satisfaction questionnaire were summarized in 
Figure 11. On an average, surgeons provided a score of 3.2/5 for successfully completing the procedure 
and ease-of-use of the system. However, scores of 1.6 and 2.3 were given to reduction in time taken to 
perform the image manipulation task and memorability of the gestures, respectively. 

Usability Study with Surgeons: Last, we conducted another user study with surgeons to compare three 
interaction modalities: 1. keyboard and mouse; 2. gestures; and 3. speech. Overall, there were 12 surgeons 
participating in the study, and this study was organized and approved by the Indiana University School 
of Medicine. Each participant was asked to perform an image manipulation task using all three modalities. 
The tasks and gesture lexicons (two best lexicons, L6 and L8) and modalities are completely randomized. 
Results shown in Figure 14 suggests that surgeons consider gesture and speech to be natural and 



intuitive; however, there is a legacy bias and a learning curve associated with these modern interfaces. 
This requires customization and adaptability for these interfaces to be smoothly integrated with the OR.  
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